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1. Introduction1. Introduction
Atmospheric nanoparticles (<0.05 μm) have caused 

great concern recently because their effects on human 
health may be stronger than those of larger particles. 
High number concentrations of nanoparticles are 
present in roadside atmosphere, and it has been 
suggested that diesel vehicles are the primary sources 
of roadside nanoparticles1). However, little is known 
for chemical composition, sources and atmospheric 
behavior of roadside nanoparticles.

To understand sources and behavior of roadside 
nanoparticles, we measured evaporation 
characteristics and chemical composition of 
nanoparticles at roadside with heavy traffic in 
Kawasaki City, Japan. The overview and some typical 
results are described below.

2. Methods2. Methods
Size-resolved particles including nanoparticles fraction were 

collected by cascade low-pressure impactors (LPI, DEKATI) at 
roadside in Kawasaki City (Fig.1). Diesel exhaust particles from 3L 
diesel truck was collected using chassis dynamometer. 

Elemental carbon (EC) and organic carbon (OC) were analyzed 
by the Carbon Analyzer (DRI, Model 2001) based on the thermal 
method under the  IMPROVE protocol. 

26 elements were quantified by particle induced X-ray emission 
(PIXE) method. 

Organic analysis was conducted by thermal desorption-gas 
chromatography/ mass spectrometry (TD-GC/MS). TD-GC/MS 
enabled organic analysis in small amount of particles (≈30 μg). 
Thermal desorption was carried out by the pyrolyzer (Py-2010iD, 
Frontier Laboratories) from 50 ℃ to 450 ℃ in a flow of helium.
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The TIC trend of S3 particles was similar to that of DEP. For the TIC of nanoparticles, 
C23 alkane or less volatile compounds were dominant. After scaling the abundances, 
the TIC pattern and abundance, and the mass spectra of the nanoparticles with 
retention time (RT) >23min were equivalent to those of lubricating oil. However, with 
RT <23min, the TIC abundance of nanoparticles got smaller than that of lubricating oil 
with earlier RT.

It is suggested that lubricating oil strongly affected to the roadside nanoparticles, 
and more-volatile organic compounds in the nanoparticles evaporated in the 
atmosphere. Fuel seemed to slightly (up to ≈20 %) contribute to the nanoparticles 
composition.

Fig.1. Sampling and analytical methods. 
24 h samplings by two or three LPIs were conducted in winter 

and summer from 2003 to 2005.
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Fig.2. Number size distribution and evaporation characteristics of roadside 
atmospheric particles. The measurements were conducted by scanning mobility 
particle sizer (SMPS, TSI) with and without thermal denuder (TD) alternately every 15 
min, and the data were averaged, respectively.

It was suggested that compounds that vaporize below 250℃ were dominant for 
roadside nuclei-mode particles (<0.030 μm).

3.1 Evaporation Characteristics 3.1 Evaporation Characteristics 

4. Conclusions4. Conclusions
It was suggested that compounds that vaporize below 250℃ were dominant for roadside nuclei-mode particles (<0.030 μm). 
For roadside nanoparticles (0.029–0.058 μm), the weight percentages of organic carbon (OC) and total elements to the PM 
mass were greater and the percentage of elemental carbon (EC) was smaller than those in the 0.058–0.102 μm and the 0.102–
0.163 μm particles. For nuclei-mode particles, the percentages of OC and total elements may be greater than the 0.029–0.058 
μm particles.
Na, Mg and S, may be originated from lubricating oil of automobiles, were detected in the nanoparticles.
Thermal desorption-gas chromatography/ mass spectrometry (TD-GC/MS) enabled organic analysis in small amount of particles 
(≈30 μg). From the analysis of chromatogram pattern and the mass spectra, it is suggested that lubricating oil strongly affected 
to the roadside nanoparticles, and more-volatile organic compounds in the nanoparticles evaporated in the atmosphere.
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Fig.3. Size distributions of particle (PM) mass, 
elemental/ organic carbons (EC/OC)  and  total 
elements concentrations at roadside. 

The PM mass and EC concentrations showed 
bimodal distribution with larger peak at around 
0.1 μm and smaller peak at submicron to 2 μm
in winter. Highest EC concentrations were 
observed at around 0.1 μm. 

Total elements concentrations were higher for 
coarse particles. Total elements concentration 
for nanoparticles (0.029–0.058 μm) was slightly 
larger than that for S3 (0.102–0.163 μm)
particles. 

3. Results & Discussion3. Results & Discussion 3.2 Elemental/organic carbons 3.2 Elemental/organic carbons 
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Fig.4. Weight percentage of EC/OC and total 
elements to PM mass by particle size at roadside. 

EC and OC constituted a large proportion of PM 
mass, especially at around 0.06–0.16 μm, where 
EC peak concentrations were observed for diesel 
exhaust particles (DEP). Therefore, it was 
suggested that DEP remarkably contributed to 
the particles at around 0.06–0.16 μm. 

Total carbon (TC) constituted 80% of the PM 
mass for nanoparticles (0.029–0.058 μm) . EC 
constituted around 80% of TC for S3 (0.102–
0.163 μm) particles, and EC/TC ratio was slightly 
smaller for nanoparticles than S3 particles. 

For nanoparticles, the percentages of OC and 
total elements to the PM mass were greater and 
the percentage of EC was smaller than those for 
S2 (0.058–0.102 μm) and S3 particles. For nuclei-
mode particles (<0.030 μm), the percentages of 
OC and total elements may be greater than those 
for nanoparticles (0.029–0.058 μm).

Fig.5. Proportions of elements by particle size at 
roadside. 

For >1.6 μm particles, Fe, Ca, Si and Al, likely 
to be originated from soil, dominated the mass of 
the total elements. For submicron particles 
(0.155–0.950 μm), high concentration of sulfur, 
likely to exist as sulfate, was observed.

Na, Mg and S, may be originated from 
lubricating oil of automobiles, were detected in 
the nanoparticles.
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Fig.6. TD-GC/MS total 
ion chromatograms 
(TIC) of (a) selected 
stages of the roadside 
size-resolved particles 
and (b) their total 
particles synthesized 
from the S1–S13 
chromatograms and (c) 
diesel exhaust particles 
(DEP), fuel and oil.   
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