10th ETH-Conference on Combustion Generated Nanoparticles August 21st -23rd 2006

Paper/Poster-Abstract Form

Name of Author:...Athanasios G. Konstandopoulos Co-Authors...Dimitrios Zarvalis, Ioannis Dolios Affiliation...Aerosol & Particle Technology Laboratory. CERTH/CPERI Mailing address ...PO Box 361, Thermi 57001 Thessaloniki GREECE Phone / Fax+302310498192, +302310498190 E-mail : agk@cperi.certh.gr

Title: Multi-instrumental Assessment of Various Filter Media in Diesel Exhaust under Transient conditions

Abstract: (min. 300 - max 500 words)

As different Diesel Particulate Filter (DPF) designs and media are becoming widely adopted research efforts on characterization of their influence on the particle emissions intensifies. In the present work the influence of a Diesel Oxidation Catalyst (DOC) and five different Diesel Particulate Filters (DPFs) under steady and transient engine operating conditions on the particulate and gaseous emissions of a common-rail diesel engine has been studied. An array of particle measuring instrumentation (SMPS, EEPS, ELPI, CPC, DC, PAS) has been employed, all measuring at the same time from the engine exhaust. Each instrument measures a different characteristic/metric of the diesel particles (mobility size distribution, aerodynamic size distribution, total number, total surface, active surface,...) and their combination assists in building a complete characterization of the particle emissions at the various measurement locations: engine out, DOC out and DPf out. The results provide useful guidelines for selection of various filter media and measuring methodologies. In the presentation among other themes to be discussed are the inter-comparison of SMPS and EEPS measurements which are found to exhibit small but systematic differences, the evolution of the collection efficiency of each filter medium (evaluated with respect to each of the characteristic metrics measured by each instrument) under steady state and transient conditions as a function of soot load of the filter and the particle emissions during filter regeneration.

Short CV:

Dr. Athanasios G. Konstandopoulos, is the founder and director of the *Aerosol & Particle Technology (APT) Laboratory*. He is a specialist in combustion aerosols and nanoparticles, with extensive research and engineering consulting experience. He is the author of numerous scientific and technical papers and an SAE Fellow. He has a hybrid background in Mechanical (*Dipl. ME, Aristotle University of Thessaloniki, 1985; MSc ME Michigan Tech, 1987) and Chemical Engineering (MSc, MPhil, PhD, Yale University, 1991*).

Return by Email latest 29th of May 2006 to ttm.a.mayer@bluewin.ch

10th ETH Conference on Combustion Generated Nanoparticles Zurich, 21-23 August 2005

Multi-instrumental Assessment of Various Filter Media in Diesel Exhaust under Transient Conditions

Athanasios G. Konstandopoulos, Dimitrios Zarvalis & Ioannis Dolios

Aerosol & Particle Technology Laboratory CERTH/CPERI, Thessaloniki, Greece

Outline

- Steady state tests: instrument comparison
- Transient tests:
 - instrument comparison
 - assessment of transient filtration efficiency as function of soot load
- Concluding Remarks

PARTICLE MEASUREMENT SYSTEMS EMPLOYED

- SMPS (TSI Long DMA and Ultrafine CPC model No. 3025)
- Standalone CPC (TSI Model No. 3022)
- EEPS

All 3 measuring from an in-house 3-stage heated diluter

ELPI

Measuring from a DEKATI 2-stage heated diluter

NANOMET (PAS & DC)

Measuring from a MATTER ENG. rotary heated diluter

Test matrix

Common rail, 1.9 L Diesel Engine, rated at 80 HP

Steady state points

Engine point	Speed, rpm	BMEP, bar	Soot mass concentration, mg/m ³	Exhaust mass flow, kg/h	Exhaust temperature , C
1	1500	3	50.2	75	259
2	1500	4	70.0	77	292
3	1500	5	59.3	86	327
4	2350	3.8	25.4	126	307
5	2250	6.7	25.9	157	381
6	2450	8.8	35.0	207	448
7	2500	5	28.4	153	348
8	1700	5.5	62.8	104	351

Transient cycle NEDC

DPFs studied

DPF	Type / Material	Dimensions (in)	Filtration area (m ²)	Porosity (%)
1	Non-oxide ceramic wall- flow monolith	5.66x6	1.90	42
2	High porosity oxide ceramic wall-flow monolith	5.66x6	2.00	60
3	Standard porosity wall- flow monolith	5.66x6	1.13	48
4	Coarse grain non-oxide ceramic wall- flow monolith	5.66x8.4	1.70	42
5	Fibrous fillter	5 x 3	0.08	85

Engine out – Soot concentration vs. PAS

Engine point: 2250 rpm, 6.7 bar, Engine OUT

Engine point: 1700 rpm, 5.5 bar, DOC OUT

D_p (nm)

DOC out – Total Concentration (#/cm³) – EEPS vs CPC

DOC out – Total Concentration (#/cm³) – SMPS vs CPC

DOC out – Total Concentration (#/cm³) – EEPS vs SMPS

DOC out – Total Concentration (#/cm³) – ELPI vs SMPS

DOC out – Total Concentration (#/cm³) – ELPI vs EEPS

DOC out – Total Concentration (#/cm³) – SMPS vs DC

DOC out – Total Concentration (#/cm³) – SMPS vs PAS

DOC out – Total Concentration (#/cm³) – ELPI vs DC

DOC out – Total Concentration (#/cm³) – ELPI vs PAS

DOC out – DC vs PAS

DOC out – PAS/DC ratio

Engine out – PAS/DC ratio

DPF-out Size Distribution Evolution at Steady State Engine Point

SMPS

Filtration Efficiency at Steady State Engine Point

Filtration Efficiency at Steady State Engine Point

NEDC CYCLE

NEDC CYCLE

DOC out – PAS/DC ratio

DOC out – PAS/DC ratio

Effect of DOC– Total Concentration (#/cm³) – ELPI

Effect of DOC– Total Concentration (#/cm³) – EEPS

NEDC– Total Concentration (#/cm³) – EEPS vs. ELPI

NEDC– Pressure drop and Challenge Mass Load

NEDC– EEPS size distribution evolution

NEDC– EEPS size distribution evolution

NEDC– EEPS size distribution evolution

NEDC– EEPS size distribution evolution

FILTER REGENERATION TEST

Step A lasted 4000 s. During this step a NOx assisted partial filter regeneration occurred. At time=4000 s, fuel was injected upstream of the DOC at a constant rate of 15 g/min. This raised the filter inlet temperature to 720 C. This step lasted for 1100 s and led to a complete filter regeneration (Step B). The fuel injection continued for 100 s more, but at a smaller fuel injection rate (10 g/min ; step C). Further fuel injections were performed in following steps (steps E and G).

FILTRATION EFFICIENCY DURING REGENERATION

The filter soot mass load has been calculated with an inhouse developed mathematical model which takes into consideration the exhaust conditions, ΔP , filter geometry and soot microstructural properties

Step A: FE is high because the filter is loaded with soot
Step B: FE is decreased to 0.89 (fast regeneration-clean filter)
Step C: FE is decreased initially due temperature decrease. Then starts increasing again (from 0.87 to 0.92) with soot accumulation.

Step D: FE initially decreases due to temperature further decrease and then increases as soot accumulates in the filter. Noticeably, it remains constant after a short period at approximately 0.91 because at these conditions no further soot is stored into the filter (CRT[®] effect).

Step E: FE is increased to 0.97 because temperature is increased to 635 C

Step F: FE is again decreased due to temperature decrease.

Step G: FE is again increased to 0.97 (due to temperature increase) and then decreases as soot is oxidized

EEPS NEDC Size distribution in Harris-Maricq Coordinates

Konstandopoulos and Kostoglou (2006)

On the σ_a of diesel particle size distributions

5 engines (1 Euro II, rest Euro III) with engine displacement 1.9-2.4 I
35 operating points 3 CR systems with different calibrations

Fuel Injection System	σ _g	STD	
Common Rail-1	1.88	± 0.09	
Common Rail-2	1.94	± 0.09	
Common Rail-3	1.86	± 0.15	
Pump Unit Injector	1.90	± 0.14	
Rotary Pump	1.85	± 0.04	
Average	1.89	± 0.08	

Including Harris & Maricq's data the average is 1.84 +/- 0.08 (ie 4%)

Konstandopoulos & Kostoglou (2003)

OXIDATIVE FRAGMENTATION

Continuous, binary random fragmentation process with size dependent rate:

$$S_i = Ai^{b(D_f)} = Ai^{aD_f^n} = Ai^{1/D_f}$$

Fragmentation kernel

 $C_{i,j} = 2/(j-1)$

Coagulation kernel (continuum)

$$B_{i,j} = B_o(i^{-1/D_f} + j^{-1/D_f})(i^{1/D_f} + j^{1/D_f})$$

Oxidative fragmentation population dynamics explains all available σ_{a} of diesel particle size distributions

CONCLUSIONS-1

- Small but systematic differences were found between SMPS and EEPS size distributions under steady state conditions
- Total number concentration between SMPS, CPC and EEPS agrees to within 15% - 30 %. ELPI correlates with all instruments but measures lower total concentration.
- SMPS, CPC and ELPI correlate linearly with PAS and DC
- PAS/DC ratio decreases across a DOC in a temperature dependent fashion.
- CPC, ELPI and EEPS used during transient cycles to measure the filtration efficiency (on a number basis) of various DPF media do not always give the same result, with the CPC being the most noiseless and EEPS the most noisy.

- CPC, ELPI and EEPS can pick reduced filtration efficiency events during the transient cycle due to high filtration velocities. These events are diminishing with soot load increase in the filter.
- In some higher porosity DPFs blow-off can be observed over the transient cycle, although not all instruments show it to the same extent.
- A methodology for measuring the filtration efficiency during regeneration as a function of soot load in the filter was developed.
- Our current work focuses on
 - Application of the oxidative-fragmentation population dynamics and the extraction of the evolution of the particle morphology during the transient cycle, as we have already reported in the past for steady state tests.
 - Extending our transient filtration models to describe mechanistically particle migration in the filter and blow-off

ACKNOWLEDGEMENTS

- European Commission for partial support of our work in this area through several projects: MAAPHRI, IMITEC, STYFF-DEXA,
- Oliver Bischoff (TSI) for making available the EEPS
- Our APT Lab colleagues