10th ETH-Conference on Combustion Generated Nanoparticles

- Toyota Central R&D Labs., INC.-----

In-cylinder Soot Nanoparticle Formation Mechanism

SHU KUBO REACTION DYNAMICS LAB. TOYOTA CENTRAL R&D LABS., INC.

BACKGROUND

- It is important to clarify formation and oxidation processes of carbonaceous soot particles for understanding health effects of soot particles.
- But, any researchers have not resolved formation process of primary soot nanoparticles yet.

OBJECTIVE

- The objective of our study is to clarify the formation process of primary soot nanoparticles via crystallites in engine combustion.
 - 1. Theoretical analysis for the crystallite formation
 - 2. Single cylinder engine experiment and particle analysis

TOYOTA CENTRAL R&D LABS., INC.-

Theoretical Analysis

CRYSTALLITE FORMATION

ESTIMATION OF CRYSTALLITE SIZE

When the carbon number composing the PAH is more than 100, the PAH molecules start to coagulate for generating graphene dimer.

→ Crystallite diameter corresponds to about 2nm.

L TOYOTA CENTRAL R&D LABS., INC.-

Engine Experiment

EXPERIMENTAL SET-UP

IN-CYLINDER PARTICLE SAMPLING

Fuel: n-heptane, Equivalence Ratio: 1.93, Engine Speed: 600rpm

CRYSTALLITE FORMATION

CRYSTALLITE FORMATION

 Formation of crystallites progresses with the increase in in-cylinder gas temperature.

PRIMARY PARTICLE FORMATION

PRIMARY PARTICLE FORMATION

Electrical Mobility Diameter Dp (nm)

Primary soot particles are formed by coagulation of crystallites in the latter half of engine combustion.

DETAILED ANALYSIS OF CRYSTALLITE

- TOF-SIMS: Molecular weight of crystallite
- AFM: Dimer formation process
- HR-TEM: Morphology of primary soot particle

MOLECULAR WEIGHT OF CRYSTALLITE

TOF-SIMS: Time of Flight Secondary Ion Mass Spectrometer

■ Molecules having more than 1,000 in mass number are formed in the formation process of crystallites. → > C₁₀₀ giant PAHs

DIMER FORMATION 1 -AFM ANALYSIS-

AFM: Atomic Force Microscope

- TOYOTA CENTRAL R&D LABS., INC.

DIMER FORMATION 2

 Change of particle thickness corresponds to monomer, dimer and trimer of graphene crystallites.

MORPHOLOGY OF PRIMARY PARTICLE

HR-TEM: High Resolution-Transmission Electron Microscope

 In-cylinder sampled soot nanoparticle consists of random aggregation of flat structure giant PAH dimers and trimers.

📥 TOYOTA CENTRAL R&D LABS., INC.=

CONCLUSION

 Soot crystallites are > C₁₀₀ PAHs which are formed by the reaction of C₂H₂ addition in gas phase.

- Dimer of soot crystallites is nuclei of primary soot particle.
- Primary soot particles are formed by random aggregation of dimers.

TOYOTA CENTRAL R&D LABS., INC.

Thank you very much for your attention!!

ENGINE CONTROL SYSTEM

FAST IN-CYLINDER GAS SAMPLING VALVE

PZT drive valve opening period: 0.18msec
N₂ dilution system (Dilution ratio > 1,000)
TOYOTA CENTRAL R&D LABS., INC.

DILUTION RATIO EFFECT

More than 1,000 of DR was kept to measure real number weighted particle size distribution.

STABILITY OF DIMER 1

-Molecular dynamics calculation-

face to face distance of PAH dimer (T=1500K, P=50atm)

More than 100 carbon number flat PAH dimer is stable under the condition of 1,500K and 50 atm.

STABILITY OF DIMER 2

- Contact area of unordered structure dimer is smaller than that of flat PAH dimer.
- Unordered structure dimer is not formed at 1,000K.