

High Performance DPF Development and Its Application

Frank Mao, Hein J. Koelman, Hein and Cheng G. Li Dow Automotive 3900 Automation Ave. Auburn Hills, MI 48326

DPF made from High porosity Advanced Ceramic Material

ACM - honeycomb wall porosity:		60±2%
Honeycomb cell density:		200 cpsi
Honeycomb wall thickness:		~ 14 mil
Substrate density		0.5 kg/L
Melting temperature:		> 1600 deg C
Elastic Modulus of wall material (25°C):		~ 20 Gpa
Poisson's ratio of wall material (25°C):		0.18 - 0.22
MOR of wall material (25°C, av max bending strength):		30 MPa
Thermal conductivity (1000°C)		1.1 W/m-K
Coefficient of Thermal Expansion:		
	<u>Temperature (°C)</u>	<u>C.T.E. (10⁻⁶ / °C)</u>
	200	3.95
	600	4.95
	1000	5.50
	1200	5.70
Thermal conductivity (1000°C) Coefficient of Thermal Expansion:	<u>Temperature (°C)</u> 200 600 1000 1200	1.1 W/m-K <u>C.T.E. (10⁻⁶ / °C)</u> 3.95 4.95 5.50 5.70

High Mechanical Performance Deep Bed Filtration

Conventional Materials (Cordierite or SiC)

- ♦ ~ 45% porosity
- "pile-of-stones" microstructure

Advance Ceramic

- ~60% porosity
- "pile-of-sticks" microstructure

interlocked felt of single crystal needles

Washington Monument Height: 555 ft., Weight: 90,000 tons

Eiffel Tower Height:: 984 ft., Weight: 7,000 tons

High Chemical Resistance

Dow Automotive

NaCl powder deposited on the filter surface then heated to 1300° C for 5 hrs

High Performance of ACM DPF – Engine validation

Dow

Coating Catalyst on ACM

Uniform catalyst costing and evenly dispersed throughout the substrate.

Adhesion of catalyst coating is being characterized.

DPF & CDPF comparison @ 8 g/l soot loading

(2.0 L diesel passenger car engine @ 3000 RPM, 30 Nm) 200 300 180 250 Exhaust Temperature (C) 160 Pressure Drop (mbar) 140 200 120 100 150 80 100 60 P- CDPF-L60 40 P- DPF-L81 50 Exhaust Temp 20 Λ 0

No observed pressure drop increase when 700 g/ft3 catalyst has been coated on ACM DPF

100

Loading Time(min)

150

200

50

0

High Catalyst Loading Capacity and Performance

Preliminary Study of Nano Particles Filtration

Measurement Method used in this study

- Electric Low Pressure Impactor (ELPI).
 - particle number concentration of particles with size in the range of 30 nm to 8 μ m.
- Condensation Particle Counter (Standalone CPC).
 - real-time total number particle concentration measurements.
- Scanning Mobility Particle Sizer (SMPS).
 - the number concentration of each particle size in the range of 10 to 430 nm.
 - measure continuously (real time) number particle concentration at a given particle size (e.g. 80 nm).
- Nanoparticle Metrology system (NANOMET)
 - The DC (Diffusion Charger) sensor provides the total accessible surface of the diesel aerosol (μm2/cm3).
 - The PAS (Photoelectric Aerosol Sensor) provides a signal (in fA) that correlates with the particles' elemental carbon content.

Performance of Nano Size Particulate Filtration

- Most of filtration with pile-of-stones styles are interception or collusion interruption due to the surface structure
- ACM morphology enable both interception and Brown force diffusion to capture particles

Effect of FV on SMPS measured size specific FE at 0 gr/m2 challenge mass load (clean filter)

Effect of FV on SMPS measured size specific FE at 0.3 gr/m2 challenge mass load

Linear velocity Impact on Filtration

Effect of challenge mass load on sizespecific FE at FV of 1.5 cm/s

Effect of challenge mass load on sizespecific FE at FV of 2.8 cm/s

Overall Filtration Efficiency

Particle size distributions across DPF during soot loading at FV of 1.5 cm/s

Particle size distributions across DPF during soot loading at FV of 2.8 cm/s

ACM DPF Performance Summary

.

- ACM DPF has superior chemical resistance to ash and metal oxides
- Engine tests with ACM DPF's have demonstrated:
 - High filtration efficiency
 - 30% less back pressure compared to SiC
 - Faster regeneration compared to SiC
- Catalyst can be coated on ACM DPF substrate
- Coated ACM DPF maintains lower back pressure performance even with 3 times more catalyst loading in comparing to SiC
- The unique microstructure of ACM DPF enable the application 4-way emission control systems

Summary of Nano Particle Study

- ACM filtration study demonstrated that the needle crystal structure enable to capture particles with both interception and Brown diffusion force
- ACM DPF has high filtration efficiency to capture nano particles - especially under 100 nano meter
- Date from full size (5.66x6) ACM DPF test demonstrates >80% filtration efficiency for particle size from 20-1000 nano meter

Application Example

Acknowledgement

Many Thanks to

Dr. Athanasios G. Konstandopoulos and CPERI

Dr. Reggie Zhan and Southwest Research Institute

Pacific Northwest Notional Lab

and Dow Cooperate R&D group

for all their contribution and support