Catalytic oxidation of carbon aerosols: Influence of the Pt-C interparticle contact on the kinetic parameters (E_a and k₀)

P. Davoodi^{1,2)}, M. Seipenbusch¹⁾, A.P. Weber²⁾, G. Kasper¹⁾

Institute for Mechanical Process Technology and Applied Mechanics, University of Karlsruhe, Germany
Institute for Mechanical Process Engineering, Clausthal University of Technology, Germany

11. ETH-Conference August 2007 Combustion Generated Nanoparticles

Universität Karlsruhe (TH)

Regeneration of diesel soot particle filters:

Reducing the temperature of thermal soot oxidation from the range of 550-650°C to lower temperatures \rightarrow *Application of catalyst*

Under some circumstances no catalytic activity of platinum was observed \rightarrow ?? \rightarrow What do we know about catalyst-Carbon particle contact?

Investigation on influence of *contact intensity* on increase of the oxidation rate

Oxidation set-up for bulk powder

TGA (thermogravimetric analysis)

U

Carbon

Printex U: industry soot generated by flame process

E

SD-Carbon: generated by spark erosion

Arrhenius diagram

Thermal oxidation measured by TGA

Types of Pt/C contact

Co-condensation contact

Pt nano sphere in a random diffusional contact with a carbon nano agglomerate (*Co-condensation contact*)

Co-agglomeration contact

Pt nano sphere in a random diffusional contact with a carbon nano agglomerate (*Co-agglomeration contact*)

Physical Vapor Deposition (PVD) contact

Universität Karlsruhe (TH)

agglomerate (*PVD contact*)

Oxidation set-up in aerosol state

Oxidation in aerosol state On-line measurement of gas concentration using FTIR

concentration of CO₂

Universität Karlsruhe (TH)

Results

E_a and k_0 (results of the oxidation in the aerosol state)

contact

Velocity coefficient vs. Pt particle size

IOR vs. Pt particle size

Turn Over Rate (TOR) = reaction rate based on the surface of catalyst

Conversion – Reaction Temperature

for Co-condensation and Co-agglomeration contact

T /°C	time s	Size of Pt nm	ko,co-aggi. 1/s	ko,co-cond. 1/s	Conversion Co-agglomeration	Conversion Co-condensation	K0,co-cond./ K0,co-aggl.
405-530	1,52	15	4,8E+05	9,7E+06	17%	30%	20
405-530	1,74	22	2,9E+05	4,7E+06	14%	28%	16,53
405-530	1,72	30	1,1E+05	7,7E+05	9%	14%	7,3

1)d_P smaller \rightarrow higher specific surface area \rightarrow increase of conversion

2) Co-condensation contact \rightarrow

Higher reaction rate intensive contact than Co-agglomeration contact

Conclusion

Oxidation of carbon aerosol (thermal and catalytic):

 $E_a = 50 \pm 10 \text{ kJ/mol}$

Different contact type \rightarrow different k₀

An optimum size of approx. 22 nm of Pt spheres is observed.

The best Pt/C contact model \rightarrow Co-condensation type

Acknowledgement:

Deutsche Forschungsgemenischaft (DFG)

