

UNECE GRPE Particle Measurement Programme

PMP LIGHT DUTY INTER-LABORATORY EXERCISE: FINAL RESULTS

Zurich 13th-15th August 2007

J. Andersson, B. Giechaskiel, P. Dilara

Outline

- Inter-laboratory Exercise Summary
- Experimental set up
- Mass results
- Number results
- Alternative Particle Number Systems
- Conclusions

3

Outline

- Inter-laboratory Exercise Summary
- Experimental set up
- Mass results
- Number results
- Alternative Particle Number Systems
- Conclusions

Inter-laboratory Correlation Exercises - Summary

- Heavy-duty programme starts September 2007
- Light-duty Exercise prioritised
- Commenced late summer 2004
- Completed August 2006
- 9 labs participated (11 repetitions)
- Project managed by DG JRC (Ispra, Italy)
- Golden Engineer funded by DfT (UK)

Inter-laboratory Correlation Exercises – (light duty)

- Repeated NEDC tests made at several laboratories (with JRC bookends)
- Traveling 'Golden Engineer' + two of JRC staff to ensure best
 and reproducible testing practice
- Very low PM 'Golden Vehicle' at all labs (Repeat./Reproduc.)
- Tests on:
 - Gaseous Pollutants
 - Pre-specified modified mass measurement system
 - 'Golden Measurement System' for particle numbers
 - Additional vehicles of various types
 - Alternative systems for particle numbers

Outline

- Inter-laboratory Exercise Summary
- Experimental set up
- Mass results
- Number results
- Alternative Particle Number Systems
- Conclusions

PMP Mass system specifications

- Cyclone (2.5µm to 10µm cut-point)
- Lab modified systems with external heating tapes
 - Zone held at $47^{\circ}C + -5^{\circ}C$ for >0.2s
 - Temperatures recorded
 - Filter face velocity (50cm/s to 80cm/s)
- Modified filter holders for even deposition of material
- Pallflex TX40 mandated; single batch for all tests
- No back-up filter
- Single filter for entire NEDC for DPF equipped and gasoline vehicles
- Urban and extra-urban filters for conventional Diesels
- HORIBA HFU-4770 (Heated Particulate Filter Module) (2 labs)

A particle number method employing a condensation nucleus counter, but using sample pre-conditioning to eliminate the most volatile particles which may contribute significantly to variability.

Other particle number systems tested

- ALTERNATIVE SYSTEMS (same specifications)
 - Clone GPMS: Rotating Disc (MATTER Eng.) + Evaporation Tube + Dilutor (3 lab)
 - OEM: Other manufacturers to the provider of GPMS
 - SPCS: HORIBA Solid particle counting system (2 labs)
 - FPS: DEKATI FPS (modified) GRIMM modified CPC 5.403 (3 labs) or TSI CPC 3010 lab modified (3 labs)
- ADDITIONAL SYSTEMS (differences)
 - EJ: Dual Ejector dilutor-TSI CPC 3010 lab modified (1 lab)
 - FPS/EJ+TD: Ejector dilutor or FPS + Thermodenuder -TSI CPC 3010 lab modified (1 lab)

Vehicles tested

Statistical Issues

11th ETH Conference on Combustion Generated Nanoparticles, Zürich, 13th-15th August 2007

• Significance

$$CI = \overline{x} \pm t_{(a/2,n-1)} \frac{s}{\sqrt{n}}$$
95%
$$CI = \overline{x} \pm 2.7 \frac{s}{\sqrt{5}} = \overline{x} \pm 2s$$

12

Outline

- Inter-laboratory Exercise Summary
- Experimental set up
- Mass results
- Number results
- Alternative Particle Number Systems
- Conclusions

11th ETH Conference on Combustion Generated Nanoparticles, Zürich, 13th-15th August 2007

Particulate Mass Emissions NEDC - Golden Vehicle

Particulate Mass Emissions NEDC - all vehicles

15

Outline

- Inter-laboratory Exercise Summary
- Experimental set up
- Mass results
- Number results
- Alternative Particle Number Systems
- Conclusions

Particle Numbers from NEDC (#/km) - Golden Car

16

11th ETH Conference on Combustion Generated Nanoparticles, Zürich, 13th-15th August 2007

DPF fill state and preconditioning

Apparent poor repeatability is manifestation of DPF fill effects and preconditioning

influence particle numbers - and repeatability!

11th ETH Conference on Combustion Generated Nanoparticles, Zürich, 13th-15th August 2007

NEDC Particle Numbers (#/km) – Rest vehicles

19

Outline

- Inter-laboratory Exercise Summary
- Experimental set up
- Mass results
- Number results
- Alternative Particle Number Systems
- Conclusions

11th ETH Conference on Combustion Generated Nanoparticles, Zürich, 13th-15th August 2007

Alternative systems – Golden vehicle

11th ETH Conference on Combustion Generated Nanoparticles, Zürich, 13th-15th August 2007

Alternative systems – Rest vehicles

11th ETH Conference on Combustion Generated Nanoparticles, Zürich, 13th-15th August 2007

Alternative systems – Real Time comparisons

Validation Exercise and Round Robin simulation

24

Outline

- Inter-laboratory Exercise Summary
- Experimental set up
- Mass results
- Number results
- Alternative Particle Number Systems
- Conclusions

Conclusions 1/3

- Golden vehicle (2-s method)
 - PM: ~ 0.34 mg/km ± 35%
 - PN: ~ 8x10¹⁰ /km ± 31%
- Rest vehicles
 - PM: Conv. Diesels(11-40mg/km)>G-DI(2-13mg/km)>porous DPF~MPI ~DPF(1mg/km)
 - PN: Conv. Diesels (5x10¹³)>G-DI(5x10¹²)>porous DPF(5x10¹¹)>MPI ~DPF(1x10¹¹)
- The majority of alternative systems correlated closely with the GPMS
- The validation exercise and a simulation of a Round Robin exercise showed that number method (and mass) have reproducibility levels similar to those of HC and CO.

Conclusions 2/3

- Mass & Number method comparison
 - Both mass and number sufficiently sensitive to discriminate between a DPF equipped Diesel and non-DPF equipped Diesel
 - In this testing, the mass method proved unable to discriminate a porous (cordierite) wall-flow DPF from a more efficient (silicon carbide) one.
 - In this testing, the mass method proved unable to discriminate a low Euro-4 diesel vehicle and a high emitting GDI vehicle

Conclusions 3/3

- Mass & Number method comparison
 - The mass method collects a large gaseous volatile fraction that may be 20 times the mass of the solid particles collected
 - Mass method insensitive to DPF fill state and preconditioning of the vehicle, 'true repeatability' masked
 - Number metric provides best sensitivity (15 times better) and avoids uncertainties with volatile components

Acknowledgements

- Labs that participated in the exercise
 - RICARDO, AVL-MTC, RWTUV, LAT, NTSEL, NIER, UTAC, SHELL and JRC
- Companies that provided the instruments, fuel and vehicle

 AECC, CONCAWE, DEKATI, GRIMM, HORIBA, MATTER, TSI
- AEA Technology for the calibrations of the GPMS
- JRC staff for assisting other labs : Rafael Munoz-Bueno, Urbano Manfredi, Rinaldo Colombo

Thank you very much for your attention!

11th ETH Conference on Combustion Generated Nanoparticles, Zürich, 13th-15th August 2007

Number – Mass difference in CoV

Real time emissions of DPF vehicles

Time [s]

Regulated emissions

Order	Laboratory	Location	Lab Identifier	Start Date	End Date
1	JRC#1	Ispra, Italy	Lab#1r1	11-Nov-04	17-Nov-04
2	AVL_MTC	Sweden	Lab#2	30-Nov-04	03-Dec-04
3	Ricardo Shoreham Technical Centre	UK	Lab#3	30-Jan-05	07-Feb-05
4	RWTUEV	Essen, Germany	Lab#4	28-Feb-05	11-Mar-05
5	Laboratory of Applied Thermodynamics	Thessaloniki, Greece	Lab#5	06-Apr-05	19-Apr-05
6	JRC#2	Ispra, Italy	Lab#1r2	11-May-05	31-May-05
7	NTSEL	Japan	Lab#6	30-Aug-05	22-Sep-05
8	NIER	Korea	Lab#7	25-Oct-05	11-Nov-05
9	Shell Global Solutions	Chester, UK	Lab#8	22-Mar-06	12-Apr-06
10	UTAC	Paris, France	Lab#9	16-May-06	30-May-06
11	JRC#3	Ispra, Italy	Lab#1r2	13-Jun-06	26-Jun-06

Vehicle	Туре	Lab	Code
Peugeot 407 HDi FAP 2000 cc	DPF Diesel [Oxicat, uncoated DPF, FBC]	All	Au-Vehicle
BMW 525d catalysed DPF equipped, 2500 cc	DPF Diesel [Oxicat, catalysed DPF]	RICARDO	DPF#1
Mazda Bongo catalysed DPF, 2000cc	DPF Diesel [Oxicat, catalysed DPF]	NTSEL	DPF#2
Toyota Avensis D-CAT 2000cc	DPF Diesel [Oxicat, deNOx, catalysed DPF]	SHELL	DPF#3
Mercedes Vito Van DPF 3000cc	DPF Diesel [Oxicat, catalysed DPF]	SHELL	DPF#4
Peugeot 206 HDi FAP	DPF Diesel [Oxicat, uncoated DPF, FBC]	UTAC	DPF#5
FIAT, Idea, MPI, EURO-4, TWC, 1400cc	Port-injected gasoline	JRC	MPI Vehicle
Mitsubishi, Carisma, GDI, TWC/deNOx 1800 cc	Direct-Injection Gasoline (lean)	RWTUV	GDI Vehicle#1
VW, GOLF FSI, TWC/deNOx 1600 cc	Direct-Injection Gasoline (lean)	JRC	GDI Vehicle#2
Toyota Crown G-DI, 3000cc	Direct-Injection Gasoline (lean)	NTSEL	GDI Vehicle#3
BMW 120d PMFC 2000cc	Conventional Diesel	SHELL	non-DPF#1
Audi A2, TDi, EURO-4, Oxicat, 1500 cc	Conventional Diesel	RICARDO	non-DPF#2
VW, GOLF TDi, non-DPF, Oxicat, 1800 cc	Conventional Diesel	RWTUEV	non-DPF#3
Honda Accord i-CTDi, EURO-4, Oxicat/deNOx, 2200 cc	Conventional Diesel	LAT	non-DPF#4
Kia Pride, non-DPF, 1500cc	Conventional Diesel	NIER	non-DPF#5
Vauxhall Astra, CDTi, 1700cc	Conventional Diesel	SHELL	non-DPF#6

Timetable

35

11th ETH Conference on Combustion Generated Nanoparticles, Zürich, 13th-15th August 2007

No	Address:	PMP testing weeks:
1	JRC (Ispra, Italy)	November 04
2	AVL MTC (Sweden)	December 04
	AEA Technology (UK)	Calibration of Golden Measurement System
3	Ricardo Consulting Engineers (UK)	February 05
4	RWTÜV (Essen, Germany)	March 05
5	Lab of Applied Thermodynamics (LAT) (Greece)	April 05
6	JRC (Ispra, Italy)	May 05
	AEA Technology (UK)	Calibration of Golden Measurement System
		June- Transfer to Japan
7	NTSEL, Japan	July 05
8	National Motor Vehicle Emission Research Laboratory, Korea	September 05
		End September 05 – Transfer to Europe
9	Shell Global Solutions (UK)	March 06
10	UTAC (France)	May 06
	AEA Technology (UK)	Calibration of Golden Measurement System
11	JRC (Ispra, Italy)	June 06
	1st DRAFT FINAL REPORT	September 06
	AEA Technology (UK)	Calibration of Golden Measurement System
	2 nd DRAFT FINAL REPORT	January 07
12	CARB, USA	Feb 07
	FINAL REPORT	April 07

Stabilisation Distances

Pre-conditioning effect (Blow out)

Type of preconditioning

11th ETH Conference on Combustion Generated Nanoparticles, Zürich, 13th-15th August 2007

Pre-conditioning effect (Blow out)

Mass comparisons

Instruments for mass estimation