

Composition Analysis of Fine Particles from Diesel Vehicles using PIXE

Yuichi GOTO

Environment Research Department

National Traffic Safety and Environment Laboratory Katsumi SAITO

Environmental Research & Information Center of Akita Prefecture

Contents

- 1. Introduction
- 2. What is PIXE?
- 3. Methods
- 4. Results
- 5. Conclusions

Introduction

- Distributions of diesel exhaust particles have been investigated in much detail by many researchers. And also the behaviors of emission particles have been examined in various driving conditions. During idling or deceleration, fine particles are emitted from diesel vehicles.
- However, compositions of fine particles emitted from diesel vehicles with DPF have not been investigated enough yet. We presented Nano-Particle model for DEP in 8th ETH Conference, 2004. This model estimated the possibility of solid fine particles, so we focus on elements' analyses of fine particles.
- In this study, compositions of fine particles in each size have been analysed by PIXE (Particle Induced X-ray Emission) analyses in air under various driving conditions.

ETH 2004 T.Kawai, R.Montajir, Y.Goto, M.Odaka

What is PIXE?

- High sensitivity
- Measurement in the air
- Wide elements

PIXE (Particle Induced X-ray Emission)

PIXE is a technique used in determining the elemental make-up of a material or sample. When a material is exposed to an ion beam, atomic interactions occur that gives off wavelengths of EM radiation in the x-ray part of the spectrum specific to an element.

Methods

Schematic of Experiment Setup

Specifications of Instruments

Engine Specif	ication			
Displacement (L)	4.009			
Cylinder No.	4 cylinders			
Combustion chamber	Reentrant. Direct ini.			
Bore× Stroke (mm)	104.0 × 118.0			
Compressin ratio	18.0			
Turbo system	Weast gate			
After-treatment system	Cont. regen. Type DP			
Fuel supply	Common rail			
Maximum power (kW / rpm	110/3000 (net)			
Maximum torque (Nm / ron	392/1600 (net)			
Idling speed (rom)	650`´			

S=10nn	m Diese	l fue
		านธ

ltem		Unit	Value
Density	15°C	a/ cm ³	0.8183
Viscositv	30°C	mm ² /s	3.067
CFPP		J°	- 17
S contents		mass%	0.0004
Cetane value			56.5
HERR		μm	287
CHN analvsis	С	mass%	86.0
	Н	mass%	13.9
	Ν	mass%	<0.1
GHV		J/g	46040
NHV		J/g	42900
Cetane index		-	58.7

	CITICALIONS
	Impactor
Configuration	Impactor only
Flow Rate(at the inlet)	101 / min
Pressure Drop (without filter)	90kPa(360 in wa)
Size(D× H)	83× 521mm
Weight	4.7ka(10.3lb)

None Moudi II TM Specifications

Stage No.	Size(nm)	l l
1	10,000	
2	5 600	
3	3,200	
4	1,800	
5	1.000	
6	560	
7	320	
8	180	
9	100	
10	56	
11	32	
12	18	
13	10	-

Sampling Stages

Test conditions

Fine particles are emitted under idling conditions. Impact on fine particle emissions were investigated under regeneration condition.

Test No.	Sampling point	Engine condition	Particle size	Sampling time
1	Before DPR	Idlina <i>(</i> 650rpm)	80nm	1Hr
) 2	Before DPR	Idlina <i>(</i> 650rpm)	15nm	1Hr
3	after DPR	ldilna <i>(</i> 650rpm)	15nm	6Hr
4	after DPR	Regeneration (950rpm	15nm	30Min (10Min× 3)

Nanometer Aerosol sampler (TSI 3089)

- Test No. 1 2 of Before DPR are short sampling time because of high particle concentration.
- Test No.34 of After DPR are long sampling time because of low particle concentration.

• DPR is forcibly regenerated at intervals in the condition of long idling.

11th ETH Conference on Combustion Generated Nanoparticles, Zurich, 13 August 2007National Traffic Safety and Environment LaboratoryComposition Analysis of Fine Particles from Diesel Vehicles using PIXE

Testing setup

Measurement Instruments

Test Vehicles

Results

Inorganic Compositions of Size-resolved DEP (Before DPF) - Idling by Nano Moudi

		NN1-5	NN1-6	NN1-7	NN1-8	NN1-9	NN1-10	NN1-11	NN1-12	NN1-13
		1800 nm -	1000 nm -	560 nm -	320 nm -	180 nm -	100 nm -	56 nm -	32 nm -	18 nm -
		1000 nm	560 nm	320 nm	180 nm	100 nm	56 nm	32 nm	18 nm	10 nm
		Stage No. 5	Stage No. 6	Stage No. 7	Stage No. 8	Stage No. 9	Stage No. 10	Stage No. 11	Stage No. 12	Stage No. 13
Е	lemental cor	nposition (ng/m	3)							
	Mg	659	1620	758	1700	798	<loq< td=""><td>1950</td><td>5170</td><td>5090</td></loq<>	1950	5170	5090
	Si	<loq< td=""><td>1260</td><td><loq< td=""><td>416</td><td>642</td><td>1090</td><td>1020</td><td>1940</td><td>1760</td></loq<></td></loq<>	1260	<loq< td=""><td>416</td><td>642</td><td>1090</td><td>1020</td><td>1940</td><td>1760</td></loq<>	416	642	1090	1020	1940	1760
	S	<loq< td=""><td><loq< td=""><td><loq< td=""><td>818</td><td><loq< td=""><td>639</td><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>818</td><td><loq< td=""><td>639</td><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>818</td><td><loq< td=""><td>639</td><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	818	<loq< td=""><td>639</td><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	639	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
	Cl	338	1260	655	<loq< td=""><td><loq< td=""><td>384</td><td>1460</td><td>2180</td><td>1290</td></loq<></td></loq<>	<loq< td=""><td>384</td><td>1460</td><td>2180</td><td>1290</td></loq<>	384	1460	2180	1290
	Κ	<loq< td=""><td><loq< td=""><td>63.6</td><td>117</td><td>57.1</td><td>70.4</td><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>63.6</td><td>117</td><td>57.1</td><td>70.4</td><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	63.6	117	57.1	70.4	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
	Ca	11.3	249	1510	2590	1400	824	307	26.6	227
	Fe	1.53	17.7	15.5	2150	54.0	36.6	21.4	54.9	64.5
	Ni	0.44	6.52	<loq< td=""><td><loq< td=""><td>2.48</td><td>1.55</td><td><loq< td=""><td>19.4</td><td>2.93</td></loq<></td></loq<></td></loq<>	<loq< td=""><td>2.48</td><td>1.55</td><td><loq< td=""><td>19.4</td><td>2.93</td></loq<></td></loq<>	2.48	1.55	<loq< td=""><td>19.4</td><td>2.93</td></loq<>	19.4	2.93
	Cu	<loq< td=""><td><loq< td=""><td><loq< td=""><td>4.96</td><td>7.14</td><td>13.6</td><td>15.8</td><td>14.5</td><td>12.7</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>4.96</td><td>7.14</td><td>13.6</td><td>15.8</td><td>14.5</td><td>12.7</td></loq<></td></loq<>	<loq< td=""><td>4.96</td><td>7.14</td><td>13.6</td><td>15.8</td><td>14.5</td><td>12.7</td></loq<>	4.96	7.14	13.6	15.8	14.5	12.7
	Zn	3.06	35.1	261	469	395	448	211	50.0	65.4
	Pb	<loq< td=""><td>3.10</td><td>1.55</td><td>20.8</td><td><loq< td=""><td>38.8</td><td><loq< td=""><td><loq< td=""><td>27.3</td></loq<></td></loq<></td></loq<></td></loq<>	3.10	1.55	20.8	<loq< td=""><td>38.8</td><td><loq< td=""><td><loq< td=""><td>27.3</td></loq<></td></loq<></td></loq<>	38.8	<loq< td=""><td><loq< td=""><td>27.3</td></loq<></td></loq<>	<loq< td=""><td>27.3</td></loq<>	27.3
Ic	nic composi	ition ($\mu g/m^3$)								
	NO_2^-	17.4	9.47	10.0	2.37	6.32	6.58	18.2	13.2	5.26
	NO_3^-	8.42	6.05	6.58	3.42	4.74	5.26	12.4	8.42	5.00
	SO4 ²⁻	0.26	0.53	1.32	0.79	0.79	1.58	0.79	1.05	0.79

LOQ is below limit of quantification. Indication of italic and under bar is value of under the determination limit.

Mg, Si, Ca, Zn are emitted before DPF in Idling.

Inorganic Compositions of Size-resolved DEP (After DPF) – Idling by Nano Moudi

		NNA1-5	NNA1-6	NNA1-7	NNA1-8	NNA1-9	NNA1-10	NNA1-11	NNA1-12	NNA1-13
		1800 nm -	1000 nm -	560 nm -	320 nm -	180 nm -	100 nm -	56 nm -	32 nm -	18 nm -
		1000 nm	560 nm	320 nm	180 nm	100 nm	56 nm	32 nm	18 nm	10 nm
		Stage No. 5	Stage No. 6	Stage No. 7	Stage No. 8	Stage No. 9	Stage No. 10	Stage No. 11	Stage No. 12	Stage No. 13
E	emental cor	mposition (ng/m	3)							
	Mg	268	267	7.70	175	296	<loq< td=""><td>280</td><td>826</td><td>584</td></loq<>	280	826	584
	Si	<loq< td=""><td>48.1</td><td><loq< td=""><td>307</td><td>93.1</td><td><loq< td=""><td>131</td><td><loq< td=""><td>45.6</td></loq<></td></loq<></td></loq<></td></loq<>	48.1	<loq< td=""><td>307</td><td>93.1</td><td><loq< td=""><td>131</td><td><loq< td=""><td>45.6</td></loq<></td></loq<></td></loq<>	307	93.1	<loq< td=""><td>131</td><td><loq< td=""><td>45.6</td></loq<></td></loq<>	131	<loq< td=""><td>45.6</td></loq<>	45.6
	S	<loq< td=""><td>160</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>157</td><td>249</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	160	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>157</td><td>249</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>157</td><td>249</td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td>157</td><td>249</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>157</td><td>249</td></loq<></td></loq<>	<loq< td=""><td>157</td><td>249</td></loq<>	157	249
	Cl	120	98.1	<loq< td=""><td><loq< td=""><td>98.2</td><td>148</td><td>90.9</td><td><loq< td=""><td>549</td></loq<></td></loq<></td></loq<>	<loq< td=""><td>98.2</td><td>148</td><td>90.9</td><td><loq< td=""><td>549</td></loq<></td></loq<>	98.2	148	90.9	<loq< td=""><td>549</td></loq<>	549
	Κ	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
	Ca	<loq< td=""><td><loq< td=""><td><loq< td=""><td>70.6</td><td><loq< td=""><td>5.69</td><td>11.0</td><td><loq< td=""><td>63.2</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>70.6</td><td><loq< td=""><td>5.69</td><td>11.0</td><td><loq< td=""><td>63.2</td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>70.6</td><td><loq< td=""><td>5.69</td><td>11.0</td><td><loq< td=""><td>63.2</td></loq<></td></loq<></td></loq<>	70.6	<loq< td=""><td>5.69</td><td>11.0</td><td><loq< td=""><td>63.2</td></loq<></td></loq<>	5.69	11.0	<loq< td=""><td>63.2</td></loq<>	63.2
	Fe	0.51	51.8	3.52	3.98	3.57	4.55	0.54	96.6	15.0
	Ni	0.15	<loq< td=""><td>0.16</td><td><loq< td=""><td>0.57</td><td>0.47</td><td><loq< td=""><td>1.75</td><td>0.49</td></loq<></td></loq<></td></loq<>	0.16	<loq< td=""><td>0.57</td><td>0.47</td><td><loq< td=""><td>1.75</td><td>0.49</td></loq<></td></loq<>	0.57	0.47	<loq< td=""><td>1.75</td><td>0.49</td></loq<>	1.75	0.49
	Cu	0.47	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>2.02</td><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>2.02</td><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>2.02</td><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td>2.02</td><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>2.02</td><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td>2.02</td><td><loq< td=""></loq<></td></loq<>	2.02	<loq< td=""></loq<>
	Zn	0.73	<loq< td=""><td><loq< td=""><td>1.24</td><td>1.60</td><td>1.09</td><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>1.24</td><td>1.60</td><td>1.09</td><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	1.24	1.60	1.09	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
	Pb	<loq< td=""><td><loq< td=""><td><loq< td=""><td>1.09</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>1.48</td><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>1.09</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>1.48</td><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>1.09</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>1.48</td><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	1.09	<loq< td=""><td><loq< td=""><td><loq< td=""><td>1.48</td><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>1.48</td><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td>1.48</td><td><loq< td=""></loq<></td></loq<>	1.48	<loq< td=""></loq<>
Io	nic compos	ition ($\mu g/m^3$)								
	NO_2^{-}	1.00	1.80	4.47	1.40	0.96	2.63	0.66	1.14	0.96
	NO_3^-	0.92	1.32	2.15	0.79	0.79	1.49	0.88	0.96	1.01
	${\rm SO_4}^{2-}$	< 0.04	0.09	0.09	< 0.04	0.04	0.04	< 0.04	< 0.04	0.04

LOQ is below limit of quantification. Indication of italic and under bar is value of under the determination limit.

Mg, Si, Ca, Fe, Ni are emitted after DPF in Idling.

13

Inorganic Compositions of Size-resolved DEP (After DPF, Regeneration) – Idling by Nano Moudi

		NNT1-5	NNT1-6	NNT1-7	NNT1-8	NNT1-9	NNT1-10	NNT1-11	NNT1-12	NNT1-13
		1800 nm -	1000 nm -	560 nm -	320 nm -	180 nm -	100 nm -	56 nm -	32 nm -	18 nm -
		1000 nm	560 nm	320 nm	180 nm	100 nm	56 nm	32 nm	18 nm	10 nm
		Stage No. 5	Stage No. 6	Stage No. 7	Stage No. 8	Stage No. 9	Stage No. 10	Stage No. 11	Stage No. 12	Stage No. 13
Ele	mental con	nposition (ng/m	3)							
	Mg	2350	1850	<loq< td=""><td><loq< td=""><td>1720</td><td>1640</td><td>619</td><td>9600</td><td>7410</td></loq<></td></loq<>	<loq< td=""><td>1720</td><td>1640</td><td>619</td><td>9600</td><td>7410</td></loq<>	1720	1640	619	9600	7410
	Si	1450	174	2340	1260	552	459	<loq< td=""><td>1060</td><td>332</td></loq<>	1060	332
	S	628	952	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
	Cl	<loq< td=""><td><loq< td=""><td>1060</td><td><loq< td=""><td><loq< td=""><td>1550</td><td><loq< td=""><td><loq< td=""><td>5700</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>1060</td><td><loq< td=""><td><loq< td=""><td>1550</td><td><loq< td=""><td><loq< td=""><td>5700</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	1060	<loq< td=""><td><loq< td=""><td>1550</td><td><loq< td=""><td><loq< td=""><td>5700</td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>1550</td><td><loq< td=""><td><loq< td=""><td>5700</td></loq<></td></loq<></td></loq<>	1550	<loq< td=""><td><loq< td=""><td>5700</td></loq<></td></loq<>	<loq< td=""><td>5700</td></loq<>	5700
	Κ	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
	Ca	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
	Fe	142	<loq< td=""><td><loq< td=""><td>16.7</td><td>31.0</td><td>42.8</td><td>56.9</td><td>728</td><td>25.4</td></loq<></td></loq<>	<loq< td=""><td>16.7</td><td>31.0</td><td>42.8</td><td>56.9</td><td>728</td><td>25.4</td></loq<>	16.7	31.0	42.8	56.9	728	25.4
	Ni	7.42	8.07	4.34	21.1	13.6	8.69	10.3	46.8	37.1
	Cu	<loq< td=""><td><loq< td=""><td>8.69</td><td>11.2</td><td>6.83</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>37.1</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>8.69</td><td>11.2</td><td>6.83</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>37.1</td></loq<></td></loq<></td></loq<></td></loq<>	8.69	11.2	6.83	<loq< td=""><td><loq< td=""><td><loq< td=""><td>37.1</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>37.1</td></loq<></td></loq<>	<loq< td=""><td>37.1</td></loq<>	37.1
	Zn	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>35.5</td><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>35.5</td><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>35.5</td><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>35.5</td><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td>35.5</td><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>35.5</td><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td>35.5</td><td><loq< td=""></loq<></td></loq<>	35.5	<loq< td=""></loq<>
	Pb	<loq< td=""><td>2.48</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>20.5</td><td>38.7</td><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	2.48	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>20.5</td><td>38.7</td><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td>20.5</td><td>38.7</td><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>20.5</td><td>38.7</td><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td>20.5</td><td>38.7</td><td><loq< td=""></loq<></td></loq<>	20.5	38.7	<loq< td=""></loq<>
Ion	ic composi	tion ($\mu g/m^3$)								
	NO_2^-	8.4	9.5	33.2	16.8	3.2	15.8	14.2	16.8	11.6
	NO_3^{-}	12.1	12.6	21.6	15.8	11.0	13.2	16.3	11.0	13.2
	SO_4^{2-}	< 0.5	2.1	< 0.5	2.1	< 0.5	0.5	0.5	< 0.5	< 0.5

LOQ is below limit of quantification. Indication of italic and under bar is value of under the determination limit.

Mg, Si, Fe, Ni, Cu are emitted after DPF in Regeneration.

14

Inorganic Compositions of Size-resolved DEP-Idling by Nanometer Aerosol sampler

			AI	וכו	
	Be	fore		Regeneration	tion
Sample No.	NN-80	NN-15	NNA-15	NNT-15	
Particles size	80 nm	15 nm	15 nm	15 nm	_
Elemental comp	position (ng/m ³)				
Mg	<loq< td=""><td><loq< td=""><td>15400</td><td>146000</td><td></td></loq<></td></loq<>	<loq< td=""><td>15400</td><td>146000</td><td></td></loq<>	15400	146000	
Si	42800	23700	<loq< td=""><td>162000</td><td></td></loq<>	162000	
S	<loq< td=""><td>32900</td><td><loq< td=""><td><loq< td=""><td></td></loq<></td></loq<></td></loq<>	32900	<loq< td=""><td><loq< td=""><td></td></loq<></td></loq<>	<loq< td=""><td></td></loq<>	
Cl	59000	<loq< td=""><td>10200</td><td>89800</td><td></td></loq<>	10200	89800	
Κ	<loq< td=""><td>5790</td><td><loq< td=""><td><loq< td=""><td></td></loq<></td></loq<></td></loq<>	5790	<loq< td=""><td><loq< td=""><td></td></loq<></td></loq<>	<loq< td=""><td></td></loq<>	
Ca	<loq< td=""><td>505</td><td><loq< td=""><td><loq< td=""><td></td></loq<></td></loq<></td></loq<>	505	<loq< td=""><td><loq< td=""><td></td></loq<></td></loq<>	<loq< td=""><td></td></loq<>	
Fe	<loq< td=""><td>724</td><td>113</td><td>5490</td><td></td></loq<>	724	113	5490	
Ni	593	680	43.9	659	
Cu	<loq< td=""><td><loq< td=""><td><loq< td=""><td>615</td><td></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>615</td><td></td></loq<></td></loq<>	<loq< td=""><td>615</td><td></td></loq<>	615	
Zn	<loq< td=""><td><loq< td=""><td>65.9</td><td><loq< td=""><td></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>65.9</td><td><loq< td=""><td></td></loq<></td></loq<>	65.9	<loq< td=""><td></td></loq<>	
Pΰ	QC\2>1	<loq< td=""><td><loq< td=""><td><loq< td=""><td></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td></td></loq<></td></loq<>	<loq< td=""><td></td></loq<>	
Ionic compositi	on $(\mu g/m^3)$				E
NO_2^-	6.1	22.3	2.0	76.9	Mg
NO_3^-	14.2	32.4	4.0	93.1	C

NN-80 and NN-15 are soure; NNA-15 is after DPR & catalyst; NNT-15 is teatment of DRP. LOQ is below limit of quantification.

Emissions of Mg, Si, Fe, Ni, Cu increase Under regeneration.

PIXE analysis of Lubricants

Both lubricant used by test and fresh same lubricant were analyzed by PIXE.

•P, S, Ca, Zn were detected from unused oil sample.

•P, S, Ca, Zn, Al, Si, K were detected from used oil sample. It was estimated that P and S 300 – 500 mg/L, Ca 20 – 30 mg/L, Zn some mg/L, Al, Si and K 0.05 – 0.1 mg/L.

• Usually Lubricants contain antioxidant, detergent and antifoam additives.

• Generally speaking, P, S and Zn are contained in ZDTP (zinc dialkyldithiophosphate) as

antioxidant additive , Ca in Antifoam additive, Si in antifoam additive.

X-ray spectra of the engine lubricating oil samples obtained by 5.1 MeV Helium ion bombardment.

Oil target samples were fixed by making the oil sample sandwiches with 1% collodion solution based ethyl alcohol.

11th ETH Conference on Combustion Generated Nanoparticles, Zurich, 13 August 2007National Traffic Safety and Environment LaboratoryComposition Analysis of Fine Particles from Diesel Vehicles using PIXE

Conclusions

- In investigating physical and chemical characteristics of fine particles from a diesel vehicle with DPF, three factors - size distribution, concentration and chemical composition - are usually most important.
- Fine particles were sampled by using a nano-moudi sampler (MSP) and a nanometer aerosol sampler.
- Various elements (Mg, Si, Ca, Zn, Fe, Ni, Cu) in fine particles were determined by PIXE analyses. Part of these elements are used as additives in lubricant oil. It will be reasonable that some of these elements come from lubricant oil.
- Metallic elements detected by PIXE seem to be some of solid core in fine particles. Emission of these elements increased under regeneration condition.

Thank you for your attention.

My acknowledgment for Dr.Saito's substantial contribution to PIXE analyses.