

Measurement of the Instantaneous In-Cylinder Soot Temperature and Concentration in a Multi-Cylinder Engine

Patrick Kirchen Stefan Walther Peter Obrecht Konstantinos Boulouchos

Aerothermochemistry and Combustion Systems Laboratory ETH Zürich Dieter Karst Claudio Cavalloni

Kistler Instruments AG

Sensoptic

11th ETH Conference on Combustion Generated Nanoparticles

OVERVIEW

- GOALS: Correlation between in-cylinder and engine-out soot emissions Characterize cylinder and cycle specific soot emissions in a multi - cylinder engine
 - Overview of instrumentation and measurements
 - Selection and evaluation of a suitable correlation between FSN and Pyrometry
 - Use of the correlation to investigate cycle to cycle soot emission variations
 - Investigation of soot formation and oxidation processes

INTRODUCTION

SOOT INSTRUMENTATION

GOALS: Correlation between in-cylinder and engine-out soot emissions

Characterize cylinder and cycle specific soot emissions in a multi - cylinder engine

FSN

- Measurement of the steady-state, engine-out soot emissions (in exhaust system)
- Extracted exhaust is drawn through filter paper – paper blackening is measured
- A measure of all particulate components

Pyrometry

- In-cylinder measurement of soot formation and oxidation processes
- Light radiated from soot is used to determine:
 - Soot temperature
 - KL-Factor (~ soot concentration)
- Considers only hot (glowing) soot

MEASUREMENTS

TESTBENCH/INSTRUMENTATION

- VW TDI, 4 cyl. (Kistler)
- Soot instrumentation
 - In-cylinder 3 color pyrometry (KLfactor)
 - Exhaust mounted AVL 415S (FSN)
- Additional parameters
 - Cylinder pressure (cylinders 1, 2, 4)
 - Intake air pressure (1 Sensor)
 - Air mass flow rate (venturi)
 - Exhaust CO_2 concentration for λ

MEASUREMENTS

- 20 steady state operating points from the entire map
- Wide soot emission range:
 FSN = 0.4 ... 4.1
- Reference point
- Cylinders 1, 2, 4 with 3 color pyrometry und cylinder pressure

LAV

3 COLOR PYROMETRY

LAV 🔨

IMPLEMENTED SENSOR

measure. analyze. innovate.

System developed by:

- Kistler AG
- LAV (ETH Zürich)
- Sensoptic
- Uses 3 wavelengths for redundancy
- Window heated to 600°C to prevent contamination
- Small size permits use in production engines (glowplug adapter, for eg.)

3 COLOR PYROMETRY

KL-FACTOR

LAV 🔨

TYPICAL FEATURES

11th ETH Conference on Combustion Generated Nanoparticles

KL-FSN CORRELATION

LAV (C) COMPARISON

- Maximum KL-Factor value no correlation with FSN
- Investigation of the correlation between 1st and 2nd plateau and FSN
- Correlations using cylinder specific and summed KL factor values
- Best correlation with the summed KL factors from all cylinders

R ²	Cyl. 1	Cyl. 2	Cyl. 4	All Cyl.
1. Plateau	0.79	0.80	0.91	0.84
2. Plateau	0.87	0.88	0.89	0.91

FSN and KL COMPARISON

Time averaged, engine-out soot emissions

•Qualitative soot emission tendencies are reproduced by both methods

LAV 🔨

KL_{END} VALUES

CYLINDER SPECIFIC CONSIDERATIONS

• Cylinder 2:

- KL_{end} is an order of magnitude higher than other cylinders
- Non-perpendicular sensor installation
- Additional sensor access (lower compression ratio)
- Combustion and KL-factors in cylinders 1 and 4 are similar

CYCLE TO CYCLE VARIATIONS

- KL history comapred for 144 consecutive operating cycles during steady state operation (n_e = 2500 [min⁻¹], IMEP = 16 [bar])
- Soot formation process ~const.
- Soot oxidation higher variability
 x 10⁻⁹

11th ETH Conference on Combustion Generated Nanoparticles

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

KL_{MAX} AND KL_{END}

LOAD AND SPEED VARIATIONS

- Oxidation influenced by:
 - Turbulence (n_e, p_{inj})
 - Oxygen concentration (EGR, λ)

- Temperature
- Time available for oxidation

CONCLUSIONS / SUMMARY

- Engine out and in-cylinder soot emissions from a production, multicylinder engine were measured using FSN and 3 color pyrometry
- The KL_{end} value provides a measure of the cylinder and cycle specific cylinder out soot emissions
- FSN correlates well to the sum of the average cylinder specific KL_{end} values
- Cylinder out soot emissions are defined by:
 - Soot formed (~injected fuel quantity)
 - Soot oxidized:
 - Turbulence
 - Oxygen availability
 - Temperature
- Fluctuations in KL_{end} values during steady state operation are predominantly due to fluctuations in the oxidation process

THANK YOU FOR YOUR ATTENTION!