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Summary and Outline

“DPFs are becoming as much a part of the modern diesel

engine as direct injection and turbocharging.” Ulrich Dohle,
President Bosch Diesel, 2006.

Diesel system trends described

Sophisticated regeneration control strategies emerging
Materials and filter design optimization in progress

— Three major DPF materials in the market

— Pore size effects on filtration efficiency (~ 20 um threshold)

— Wall attributes, cell structure, and cell density
— Ash management

NOx aftertreatment trends and complexity being addressed
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Light-

Duty Diesel

Vehicle Production & Filter Demand
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Light-Duty Diesel Systems Trend

Close-Coupled Filters

* Drivers
— Potential for fewer components — cost, space considerations
— More continuous regeneration due to higher temperatures
— Less post-injection fuel penalty and oil dilution
- Enablers
— Smaller filters
* More ash-storage capacity (— ACT)

— Integration of catalyst function on the filter (CSF) with optimal pressure
drop performance

« Optimized porosity & washcoat interaction
[

*Asymmetric Cell Technology

DuraTrap® AT
DuraTrap® AC
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Summary of LDD Trends for PM and NOx Aftertreatment

 Clear majority of systems include a DOC with the DPF
* Two major architectures are emerging
— Close-coupled filter
- AT and SiC optimized for higher SML applications
 Cordierite applicable with proper controls
— Under-floor filter with secondary fuel injector or vaporizer
* Allows long oil-change intervals (oil dilution addressed)

* Interest in combining functionality is strong, but modular
systems are the norm for the near term

— DOC + DPF + LNT/SCR (as needed)
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Global OEM System Forecast: On-road & Non-road
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Growth of filter systems continues with tightening global HDD regulations

Source: Corning Forecast
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Potential System Configurations for Future L-HD, MD and HD
On-road Legislation (US2010 and EUVI)

Most common L-HD
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Sophisticated Regeneration Control Strategies
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Oxygen control is very good
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Nissan SAE 2007-01-1061

Adaptive learning tightens A/F
control and allows better soot
estimation.
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Key Properties of Diesel Particulate Filter Materials

DuraTrap® | DuraTrap® :
Property AC AT SIC
Stabilized Silicon
Material (assuming ~ 50% porosity) Cordierite Aluminum Carbid
Titanate arbiae
Structure Monolith Monolith Segmented
Coefficient of Thermal Expansion <6 <9 45
(x10°7/°C)  (22-1000°C)
Thermal Conductivity @ 500 °C (W/mK) ~1.0 ~1.0 10-20*
Specific Heat Capacity @ 500 °C (J/cm?3°C) 2.79 3.60 3.63
Thermal Shock Parameter (°C) @ >800 >900 <300
Strain to Failure (%) (bending _ _ _
strength/elastic modulus) 0.05 0.10 0.05
Allowable Thermal Gradient high very high low
a: MOR/(E ., x CTE) * Dependent upon bonding type
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General Material and Design Interactions

Influencing Strength Bulk Soot | Pressure | Filtration | Catalyst
Parameters Heat Mass Drop Efficiency | Storage
Capacity | Limit Space

(ffnzt:rr]to cSeIIPd/ensity I l l’ I' l’ l' I

& wall thickness)

- Bulk density, pbuk = pmaterial x (1-P) (1-OFA)
N

J
amount of ceramic material t
—
- Bulk heat capacity, ¢ " = ¢ material x poulk LI

200/12 300/15
Wall Porosity 50% 60% 50% 60%
Bulk Density - Matrix 394 g/l 315 g/l 590 g/l 470 g/l
OFA - Total 68.5% 53.0%
OFA - Inlet Channels 34.3% 26.4%

p = density, P = wall porosity, ¢, = heat capacity, OFA = open frontal area = (L-T)/L?
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Cordierite DPF reaches soot burning temperatures in about
half the time of SiC. Attributed to lower thermal conductivity.
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Material Properties Impact Regeneration Conditions
Modified Regeneration Conditions are Desired for Lower Conductivitx Materials
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« Oxides exhibit higher regeneration efficiencies at the same inlet temperatures.

- For oxides (low thermal conductivity), slightly lower filter inlet temperatures are
desirable to initiate regeneration (higher safety & lower fuel penalty to regenerate).
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PMP: Mass-Based Measurements

mean PM emissions (all vehicles)
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Jon Andersson et al., PMP LD Interlab. Final Report January ‘07
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PMP: Number-based Measurements

mean N emissions (all vehicles)
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Filtration efficiency drops significantly if DPF has significant

number of pores >20 ym. Balancing porosity and catalyst loading is
important for optimum performance.

Material | SIC.A | sic.B | sic.c | sic.o | caa | 10 p— 100 E et _ .
Porosity | 58% | 52% | 48% | 43% | 50% 9 - 19 ? $ ____Sﬁ_-'f_i'_____:____
MPS 23um | 21um | 14um | 18um | 14um g BT m — 18 5 % - :i'c-ﬂ‘,
Cell 12mil /300cpsi 7 — B e 17 8 T ¢ "“"1"'“1__j-'."--'
Structure (Wall Thickness: 0.31mm, Cell Pitch: 1.47mm) E 6 @ NOx o H B0 E g { . I o Sic A
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' [FTET -
% o C | .
E 4 140 S & I I I
0.5 T T T T T LLl S i g
DR s 3T 0 Q A
04 _____!____JI_____:____JI.____:____JI.____ L 2 - = E'} g’ & u] L L L
Sic.A i i i i i 1 w T Pore Volume(20-30um pores)  [A.U ]
= I I I I I I
o T o - - - 0 8 Pressure drop at 4 g/l
g A . SiCA SiCB  SiC.C  CdA aro|
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numbers. Thermal properties of the Ui ! F Sic-A Initial filtration efficiency
filter affect soot cake regeneration % 80 F=--r--%ice T~ ~"| drops for DPFs with pores
properties, giving different ® 50 [---b---L---L---1 >20 pym.
efficiencies vs. RPM. 40 | | |
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NGK, SAE 2007-01-0923
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Soybean biodiesel blends produce less soot, drop balance point
temperature, and result in faster burn rate. NREL, Cummins SAE 2006-01-3280
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Asymmetric cell design results in lower lifetime backpressure

20
18 //\
16
N /Standard Soot
X " / Loaded
E 12 5g/|
“(3 /
o
< 10— ¢
S ACT
© ]
8 =
o Standard t Clean
4 —
ACT
2 ; ; ; ; ; ; ; , ,
0 5 10 15 20 25 30 35 40 45 50
Ash Loading (g/l)
CORNING | Coming ncarporates | 17




DPF ash accumulation tracks lube oil consumption.

Some ash goes back to the sump.

Corning, DEER 8/06
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Ash accumulated on the DPF tracks lube oil

consumption quite well. Only 50-56% of the total ash
in the consumed oil ends up on the DPF.
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Back pressure — ash accumulation behavior
is explained. With soot, early ash
accumulation prevents deep bed filtration,
which increases back pressure. Then, loss
of filtration area by ash causes pressure
increase. Later, loss of hydraulic diameter
causes rapid increase. Asymmetric cell
geometry gives +30% ash capacity.
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Some of the ash from consumed lube oil goes back to the sump.
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Regulations Differ by Region

EU and US Light Duty Gasoline and
Diesel Vehicle Standards

Note the advantage given
to diesel in Europe
relative to NO,

Gasoline NOx B Diesel NOx Diesel PMx10

This partially explains
the clear difference in
market share of diesel
vehicles in these two
regions

Euro 3 Euro 5 (P) US Tier 2 Avg CA Sulev . ;
S Euro 6 (P) e Source: Michael P. Walsh

2005 2005 | US Tier CA Euro4 | Euro Euro Japan | Japan

Tier2, Tier2, | 2Bin5 Lev2, ™ 6™ '05 ‘09
MDPV* | Bin 9* ULEV
NOX 0.9 0.3 0.03 0.07 0.25 0.18 0.08 0.14/0.15 | 0.08

g/km

* MDPV Medium Duty Passenger Vehicles (>8,500 Ib) must comply with Bin 5 standards beginning with 2009 model year
** Euro 5 standards (model years 2009/10+)
*** Euro 6 standards recently fixed (model years 2014/15+)
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LDD NOx Roadmap 2015 Diesel Market Penetration

US

EU

Japan

NOx Sensor NH3 Sensor

<15%

50%

< 5%
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Summary

“DPFs are becoming as much a part of the modern diesel

engine as direct injection and turbocharging.” Ulrich Dohle,
President Bosch Diesel, 2006.

Diesel system trends described

Sophisticated regeneration control strategies emerging
Materials and filter design optimization in progress

— Three major DPF materials in the market

— Pore size effects on filtration efficiency (~ 20 um threshold)

— Wall attributes, cell structure, and cell density
— Ash management

NOx aftertreatment trends and complexity being addressed
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