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Summary and Outline

“DPFs are becoming as much a part of the modern diesel 
engine as direct injection and turbocharging.” Ulrich Dohle, 
President Bosch Diesel, 2006.

• Diesel system trends described
• Sophisticated regeneration control strategies emerging
• Materials and filter design optimization in progress 

– Three major DPF materials in the market
– Pore size effects on filtration efficiency (~ 20 μm threshold)
– Wall attributes, cell structure, and cell density 
– Ash management 

• NOx aftertreatment trends and complexity being addressed 
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Light-Duty Diesel 
Vehicle Production & Filter Demand

CAGR 07-11
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Light-Duty Diesel Systems Trend                                     
Close-Coupled Filters
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*Asymmetric Cell Technology

• Drivers
– Potential for fewer components → cost, space considerations
– More continuous regeneration due to higher temperatures
– Less post-injection fuel penalty and oil dilution

• Enablers
– Smaller filters

• More ash-storage capacity (→ ACT)
– Integration of catalyst function on the filter (CSF) with optimal pressure 

drop performance
• Optimized porosity & washcoat interaction
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Summary of LDD Trends for PM and NOx Aftertreatment

• Clear majority of systems include a DOC with the DPF

• Two major architectures are emerging

– Close-coupled filter
• AT and SiC optimized for higher SML applications

• Cordierite applicable with proper controls

– Under-floor filter with secondary fuel injector or vaporizer 
• Allows long oil-change intervals (oil dilution addressed)

• Interest in combining functionality is strong, but modular 
systems are the norm for the near term

– DOC + DPF + LNT/SCR (as needed)
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Global OEM System Forecast: On-road & Non-road

Source:  Corning Forecast

Key Assumptions

• EUVI timing: ’12-13 w/ some pull 
ahead

• US10/EUVI systems
– LHD Chassis: SCR + DPF
– LHD Engine: DPF + SCR
– M/HHD:  DPF + SCR

• Brazil: SCR and DOC+DPF

• China: SCR

• India: IPR and SCR

• 75-750 HP Non-road: DOC+DPF

(000s)
EUVI 25%
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Potential System Configurations for Future L-HD, MD and HD 
On-road Legislation (US2010 and EUVI)
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Trends:

• Typical soot loads 3-5g/l

• Some applications might   
require higher soot loads

Most common L-HD
Layout



8Corning Incorporated

Sophisticated Regeneration Control Strategies

Adaptive learning tightens A/F 
control and allows better soot 
estimation.

DPF bed temperature is controlled by 
oxygen level.

Oxygen control is very good 
in transient conditions.

Nissan SAE 2007-01-1061
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Key Properties of Diesel Particulate Filter Materials

Property DuraTrap®
AC

DuraTrap®
AT SiC

Material (assuming ~ 50% porosity) Cordierite
Stabilized 
Aluminum 
Titanate

Silicon 
Carbide

Structure Monolith Monolith Segmented

Thermal Conductivity @ 500 oC (W/mK) ~1.0 ~1.0 10-20*

Coefficient of Thermal Expansion 
(x10-7/oC)      (22-1000oC)

<6 <9 ~ 45

Specific Heat Capacity @ 500 oC (J/cm3 oC) 2.79 3.60 3.63

Thermal Shock Parameter (oC) a >800 >900 <300

Strain to Failure (%) (bending 
strength/elastic modulus) ~0.05 ~0.10 ~0.05

Allowable Thermal Gradient high very high low
a: MOR/(E mod x CTE) * Dependent upon bonding type
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General Material and Design Interactions

Influencing 
Parameters

Strength Bulk 
Heat 

Capacity

Soot 
Mass 
Limit

Pressure 
Drop

Filtration 
Efficiency

Catalyst 
Storage 
Space

% Porosity 
(constant cell density            
& wall thickness)

ρ = density, P = wall porosity, cp = heat capacity, OFA = open frontal area = (L-T)2/L2

• Bulk density, ρbulk = ρmaterial x (1-P) (1-OFA)

• Bulk heat capacity, cp
bulk = cp

material x ρbulk

amount of ceramic material t

L
Wall Porosity 50% 60% 50% 60%
Bulk Density - Matrix 394 g/l 315 g/l 590 g/l 470 g/l
OFA - Total
OFA - Inlet Channels

200/12 300/15

53.0%
26.4%

68.5%
34.3%
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Cordierite DPF reaches soot burning temperatures in about 
half the time of SiC.  Attributed to lower thermal conductivity.

NGK Euro V&VI Conf. 6-06
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• Oxides exhibit higher regeneration efficiencies at the same inlet temperatures.
• For oxides (low thermal conductivity), slightly lower filter inlet temperatures are 

desirable to initiate regeneration (higher safety & lower fuel penalty to regenerate).

Material Properties Impact Regeneration Conditions        
Modified Regeneration Conditions are Desired for Lower Conductivity Materials

AT
SiC: low porosity
SiC: high porosity

AT
SiC: low porosity
SiC: high porosity

Similar 
Temperature  

response
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PMP: Mass-Based Measurements
mean PM emissions (all vehicles)
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PMP: Number-based Measurements
mean N emissions (all vehicles)
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Filtration efficiency drops significantly if DPF has significant
number of pores >20 μm. Balancing porosity and catalyst loading is 
important for optimum performance.

DPF with pores larger than 18 μm 
show much higher full load smoke 
numbers. Thermal properties of the 
filter affect soot cake regeneration 
properties, giving different 
efficiencies vs. RPM.

All filters meet the Euro 5 PM requirements (3 
mg/km) on the NEDC test cycle.

Initial filtration efficiency 
drops for DPFs with pores 
>20 μm.

NGK, SAE 2007-01-0923

Pressure drop at 4 g/l 
soot loading is not 
improved with larger 
pores, but is more 
affected by total porosity.
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Soybean biodiesel blends produce less soot, drop balance point 
temperature, and result in faster burn rate.

Diesel PM production rates using diesel, B20 and 
B100 fuel at 2000 rpm and 20 ft-lbs. torque.  
Cummins 5.9 liter ISB engine, MY2002. Balance point temperature results at 1700 rpm.

2000 rpm, 250 ft-lbs., 354C

Soot combustion temperature 
is 550-580C for biodiesel 
blends, and 650-680C for 
diesel fuel.  Difference is due 
to carbon structure.

NREL, Cummins SAE 2006-01-3280
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Asymmetric cell design results in lower lifetime backpressure
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DPF ash accumulation tracks lube oil consumption.  
Some ash goes back to the sump.  

Ash accumulated on the DPF tracks lube oil 
consumption quite well.  Only 50-56% of the total ash 
in the consumed oil ends up on the DPF.

Some of the ash from consumed lube oil goes back to the sump.

Back pressure – ash accumulation behavior 
is explained.  With soot, early ash 
accumulation prevents deep bed filtration, 
which increases back pressure.  Then, loss 
of filtration area by ash causes pressure 
increase.  Later, loss of hydraulic diameter 
causes rapid increase.  Asymmetric cell 
geometry gives +30% ash capacity.  

Corning, DEER 8/06
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Regulations Differ by Region 

Note the advantage given 
to diesel in Europe
relative to NOx 

This partially explains 
the clear difference in 
market share of diesel 
vehicles in these two 
regions

Source: Michael P. Walsh

*  MDPV Medium Duty Passenger Vehicles (>8,500 lb) must comply with Bin 5 standards beginning with 2009  model year
**  Euro 5 standards (model years 2009/10+)
***  Euro 6 standards recently fixed (model years 2014/15+)
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LDD NOx Roadmap
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Summary

“DPFs are becoming as much a part of the modern diesel 
engine as direct injection and turbocharging.” Ulrich Dohle, 
President Bosch Diesel, 2006.

• Diesel system trends described
• Sophisticated regeneration control strategies emerging
• Materials and filter design optimization in progress 

– Three major DPF materials in the market
– Pore size effects on filtration efficiency (~ 20 μm threshold)
– Wall attributes, cell structure, and cell density 
– Ash management 

• NOx aftertreatment trends and complexity being addressed 
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