Mechanism of the catalytic soot oxidation on Fe₂O₃

H. Bockhorn^a, Sven Kureti^a, D. Reichert^a, R. Schneider^b

University of Karlsruhe

^a Institute for Technical Chemistry und Polymer Chemistry

^b Laboratory for Electron Microscopy

Germany

1

University of Karlsruhe Technical Chemistry and Polymer Chemistry

Content

- Introduction
- Experimental studies
- Mechanistic model for the soot oxidation on Fe₂O₃ catalyst
- Outlook

2

University of Karlsruhe Technical Chemistry and Polymer Chemistry

Removal of soot from diesel exhaust

Separation of soot by Diesel Particulate Filters (DPF)

- DPF regeneration
 - Continuously Regeneration Trap (CRT) $NO + 0.5 O_2 \xrightarrow{Pt} NO_2$ $_{,,C"} + 2 NO_2 \longrightarrow 2 NO + CO_2$

• Catalytic DPF (C-DPF)

"C" +
$$O_2 \longrightarrow CO_2$$
 Catalysts: CeO₂, Fe₂O₃

University of Karlsruhe Technical Chemistry and Polymer Chemistry

 CeO₂ and Fe₂O₃ originated from Fuel Borne Catalysts (FBC) enhance oxidation of deposited soot

K. Ohno, Ph.D. thesis, 2006

Fe₂O₃ reveals practical relevance for catalytic soot oxidation

University of Karlsruhe Technical Chemistry and Polymer Chemistry

- In our mechanistic studies: α-Fe₂O₃ and a C₃H₆ soot are used
- Model soot prepared by diffusion burner (C₃H₆/O₂ flame)

P. Balle, H. Bockhorn, B. Geiger, N. Jan, S. Kureti, D. Reichert, T. Schröder, *Chem. Eng. Process.* 45 (2006) 1065

- 2.6 wt.% adsorbed species
- 98.8 wt.% C
 - 0.7 wt.% O
 - 0.5 wt.% H
 - 0 wt.% N
- S_{BET} = 65 m²/g
- d = 45 nm (most frequent diameter)

O

5

University of Karlsruhe Technical Chemistry and Polymer Chemistry

Effect of the Fe₂O₃ catalyst in Temperature Programmed Oxidation (TPO) of the soot

6

University of Karlsruhe Technical Chemistry and Polymer Chemistry

Development of the contact between Fe₂O₃ catalyst and soot (HRTEM study)

H. Bockhorn, S. Kureti, D. Reichert, Top. Catal. (2007)

7

University of Karlsruhe Technical Chemistry and Polymer Chemistry

Carbothermal reaction

University of Karlsruhe Technical Chemistry and Polymer Chemistry

TPO with isotope labelled oxygen $(^{18}O_2)$

University of Karlsruhe Technical Chemistry and Polymer Chemistry

Starting period of the isotopic TPO

10

University of Karlsruhe Technical Chemistry and Polymer Chemistry

H. Bockhorn, S. Kureti, D. Reichert, submitted

11

University of Karlsruhe Technical Chemistry and Polymer Chemistry

H. Bockhorn, S. Kureti, D. Reichert, submitted

12

University of Karlsruhe Technical Chemistry and Polymer Chemistry

H. Bockhorn, S. Kureti, D. Reichert, submitted

13

University of Karlsruhe Technical Chemistry and Polymer Chemistry

H. Bockhorn, S. Kureti, D. Reichert, submitted

14

University of Karlsruhe Technical Chemistry and Polymer Chemistry

H. Bockhorn, S. Kureti, D. Reichert, submitted

15

University of Karlsruhe Technical Chemistry and Polymer Chemistry

Summary

- Fe₂O₃ catalyst enhances the soot oxidation
- Fe₂O₃ catalyst transfers the gas-phase oxygen to the soot at the contact points
- Gas-phase oxygen adsorbs dissociatively on O vacancies and migrates on the Fe₂O₃ surface to the contact points
- Contact between catalyst and soot maintains up to high conversion levels
- Catalyst is not directly involved in the soot/oxygen reaction

16

University of Karlsruhe Technical Chemistry and Polymer Chemistry

Outlook and current activities

Study of the interaction between soot and Fe₂O₃ in the sub-nm range

University of Karlsruhe Technical Chemistry and Polymer Chemistry

• Kinetic modelling

Development of improved Fe₂O₃ catalysts

18

University of Karlsruhe Technical Chemistry and Polymer Chemistry