

Exposure of engineered nanoparticles to human lung epithelial cells:

Influence of chemical composition and catalytic activity on oxidative stress

Ludwig Limbach, Robert Grass, Peter Wick, Arie Bruinink, Wendelin Stark

> ETH Zurich Empa St. Gallen

1st august generated particles

2.8.2007

TA-Grafik mrue / Quelle: BAFU

FN

Particulate matter => engineered nanoparticles

Functional Materials Laboratory

ETH Zürich www.fmi.ethz.ch

Institute for Chemical and Bioengineering

71

Tagesanzeiger, 03. August 2007

Agenda

- increasing market of engineered nanoparticles
 - examples
- quantitative uptake of nanoparticles in cells
- Reactive Oxygen Species (ROS) generation
 - nanoparticles setup (controls and references)
 - results and discussion
- outlook for a safe development of nanomaterials

Nano is growing

Few products on the market available, more will come Two expamles for possible "nano" products are...

synthetic nano-bone cement

Fully synthetic implant materials

• Amorphous TCP:

Functional Materials Laboratory Institute for Chemical and Bioengineering

ETH Zürich www.fmi.ethz.ch

- High surface area
- Faster conversion to apatite
- Bioactive glasses:
 - High in vitro bioactivity
 - Applications in dentistry

shorter recovery after operations

Stark, W.J., et al., ICP Patent, WO2005087660. Loher, S., et al., *Chem. Mater.*,17(1): 36-42 (2005) Brunner T.J. et al., *Chem Commun*, 13, 1384-6 (2006)

Coated cobalt nanoparticles

- magnetic separation
 - organic chemistry
- magnetic purification
 - water treatment
 - antibodies

Rate determining step Purification or separation

functionalization of nano-magnets (linker)

Uncertainties of engineered nanoparticles

Seeing opportunities of these nanoparticles

is there an uncertainty or a risk for human or the environment

regarding engineered nanoparticles knowing results of studies and parallels with particulate matter?

What happens when nanoparticles come in contact cells?

How could we look at?

What kind of effect could we see?

71

uptake of nanoparticles

Kirchner et al. 2005 Nano Letters Wilhelm et al. 2003 Biomaterials Chithrani et al. 2006 Nano Letters Gupta et al. 2005 Biomaterials Rothen-Rutishauser 2007 Envi. Sci Tech.

well investigated and fast uptake

L.K. Limbach, Y. Li, R.G. Grass, T.J. Brunner, M. Hintermann, M. Muller, D. Gunther, W.J. Stark, 2005 Environ. Sci. Tech

ETH

Functional Materials Laboratory Institute for Chemical and Bioengineering ETH Zürich www.fml.ethz.ch

Experimental setup

B. Alberts et. al., Molecular biology of the cell

How fast is CeO₂ uptake size dependent?

-no saturation within four hours

-linear uptake

exposure concentration 1 ppm (µg/ml)

L.K. Limbach, Y. Li, R.G. Grass, T.J. Brunner, M. Hintermann, M. Muller, D. Gunther, W.J. Stark, 2005 Environ. Sci. Tech

1711

Quantitative description of particle agglomeration

same mass concentration (1 ppm)

 n_t = number concentration β = aggregation rate constant W = stability ratio

250-500 nm

Size specific particle transport mechanism

20-50 nm

What happens after entrance?

Functional Institute for ETH Zürich v

Long term effects?

Nanoparticles associated risk

acute effects	long term effects
 → apoptosis → necrosis 	mutagenicity teratogenicity
solubility and	→ redox potential
intracellular ion release	→ reactive oxygen stress
Brunner et al. 2006 Environ. Sci. Tech Braydich-Stolle et al. 2006 Toxicol. Sci. Kirchner et al. 2005 Nano Letters	→ ion release

LK Limbach, P Wick, P Manser, RN Grass, A Bruinink, WJ Stark, Environ. Sci. Tech. 41 (11): 4158-4163 2007

71

Reactive Oxygen Species formation

Two different test systems

reaction space: cells

incl. natural formation / natural defense

reaction space: whole well

simulation of the ROS direct formation

Set of investigated nanoparticles

titania	iron oxide	cobalt oxide	manganese oxide
TiO ₂	Fe ₂ O ₃	Co ₃ O ₄	Mn ₂ O ₃

measured as:	 pure oxide Ti, Fe, Co and Mn in Silica (0.5%, 1,6%) Fe, Co, Mn Ions (FeCl₃, MnCl₂, CoCl₂)

reference

- untreated cells (in vitro)
- pure silica (cell free)

 \Rightarrow Similar size, shape, morphology and state of aggregation due to flame spray process \Rightarrow 20-80 nm nano-particles

Titania - nanoparticles

Iron oxide - nanoparticles

no ROS generated from pure iron oxide whereas iron ions induce ROS

surprisingly ROS generation of iron embedded in silica.

FIH

catalytic sites are "working" also in cells

 $10\% \text{ Fe}_2\text{O}_3$ in silica

manganese oxide

50 times increased ROS formation for manganese oxide nanoparticles, significantly more than the corresponding Mn-Ion concentration.

ROS generation of Mn even as low percentage bound in silica.

Cobalt oxide nanoparticles

LK Limbach, P Wick, P Manser, RN Grass, A Bruinink, WJ Stark, Environ. Sci. Tech. 41 (11): 4158-4163 2007

71

Cobalt oxide nanoparticles

Direct ROS generation

ROS generation is continuously until the particles are degraded or removed from the cells.

=> release of nanoparticles from cells is not well investigated

Residence time of particles in cells as a major parameter for early risk assessment

Further outlook

Can we predict possible damage of nanomaterials direct out of material properties?

- safe and sustainable development of nanoparticulate products

- No pricy down stream corrections (asbestos)

- gaining time and money
- classification of nanomaterials

Conclusion

- quantitatively ROS measurements of Mn, Co, Fe and Ti in human epithelia cells by an direct mechanism.
- catalytic sites are "working" in cells (Iron in silica)
- dissolving nanoparticles in cells can lead to additional ions effect (nano Trojan horse mechanism).
- future grouping of nanomaterials according to their chemical and physical material properties

Acknowledgments

Prof. W.J. Stark R.N. Grass N. Osterwalder T.J. Brunner L.K. Limbach S.C. Halim E.K. Athanassiou O.D. Schneider N. Lüchinger

71

Prof. D. Günther (ETHZ)

Empa St. Gallen P. Wick A. Bruinink P. Manser

Financial support BAG (Federal Office of Public Health, Switzerland)

Thank you for your attention

Questions?

ETH

Are there indicators to problematic nanomaterials?

Hierarchy of toxicological tests

Toxicological pathway

Link from cell data to materials properties

71

chemical activity

Possible pre-evaluation

occurrence probability

What are criteria for a pre-evaluation of the damage potential?

*

long term effects

- => long answer time
- => hardly measurable
- asbestos
- DDt
- CFC

71

Reactive Oxygen Species formation

71

Transition metals in lung cells

71:

Other ROS precursor?

