Brownian Coagulation at High Concentrations

M.C. Heine* and S.E. Pratsinis

Particle Technology Laboratory, Institute of Process Engineering Department of Mechanical and Process Engineering ETH Zurich, Switzerland

*currently at Bühler AG, Uzwil, Switzerland

PTL: from Fundamental Understanding to Final Performance

Fuel Cells

Sensors

Particle Synthesis, **Characterization & Modeling for scale-up**

Advanced Pigments

Nutrition

Batteries

Biomaterials

2-flame synthesis of Pt/Ba/Al₂O₃ for NO_x storage reduction

R. Strobel, M. Piacentini, L. Mädler, M. Maciejewski, A. Baiker, SEP, Chem. Mater., 18, 2532 (2006).

FSP-made Pt/Carbon particles

NINITER CONTRACTOR

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Tires,

inks

Ni for batteries

Carbon Black

materials-made in aerosol flow reactors today

Vulcanizing ZnO by Zn vapor – air oxidation

SiO₂ Flowing aid

Optical fibers

Motivation

Typical exhaust soot are *not* spherical but agglomerates:

High concentrations of exhaust soot gas concentration in the range of 10^{5} - 10^{8} #/cm³

Synthesis of Fumed Silica by SiCl₄ Hydrolysis

Chemical Reaction

- Particle Formation
- Coagulation and coalescence

Initial concentration: y(SiCl₄) ~ 12 mol% $\phi_s(SiO_2) \sim 0.01\%$ @ 300 K

Hannebauer, B.; Menzel, F. Z. Anorg. Allg. Chem. 2003, 629, 1485-1490.

Monodisperse Silica Aerosol Dynamics for SiCl₄ Oxidation, Coagulation and Sintering

Total Number Concentration $\frac{dN}{dt} = -\frac{1}{2}\beta N^{2}\rho_{g} - \frac{d[SiCl_{4}]}{dt}$ Total Surface Area Concentration $\frac{dA}{dt} = -\frac{d[SiCl_{4}]}{dt}\alpha_{m} - \frac{1}{\tau_{s}}(A - N \cdot \alpha_{s})$ Total Volume Concentration $\frac{dV}{dt} = -\frac{d[SiCl_{4}]}{dt}v_{m}$

F.E. Kruis, K. Kusters, SEP, B. Scarlett, Aerosol Sci. Technol. 19, 514-526 (1993)

=1

Eidgenössische Technische Hochschule Zürich

Swiss Federal Institute of Technology Zurich

Particle Size Evolution during SiO₂ Synthesis

High Effective Agglomerate Volume Fraction

31

Eidgenössische Technische Hochschule Zürich

Swiss Federal Institute of Technology Zurich

Derivation of the Collision Frequency Function (Brownian Continuum Regime)

Model assumptions:

 Equilibrium particle concentration profile

Sufficiently dilute concentrations

M. Smoluchowski (1917)

Langevin Dynamics (LD) Simulations

Equation of particle motion:

$$m_i \dot{\mathbf{v}} + \frac{3\pi\eta d_i}{C_i} \mathbf{v} + \mathbf{F}_{\text{Brownian}} = 0$$

Numerical solution procedure:

D.L. Ermak, H. Buckholz, *J. Comput. Phys.* **1980**, *35*, 169-182. A. Gutsch, SEP, F. Loffler, *J. Aerosol. Sci.* **1995**, *26*, 187-199.

Polydisperse Particle Growth (Full Coalescence)

Periodic boundaries

> Particle collisions New diameter, position and velocity (Mass and inertia balance)

n

 $\phi_s = const$

Initially $n_0 = 2000$ particles

If $n \le 1000$ the domain size is duplicated in turns in x, y and z-direction

 $2000 \ge n \ge 1000$ at all times

Self-preserving Size Distribution

Air properties: T = 293 K

p = 1 bar

2000 monodisperse particles $D_f = 3$ $d_0 = 1 \ \mu m$ $\rho_p = 1 \ g/cm^3$ $N_0 = 2 \ x \ 10^9 \ \#/cm^3$

Brownian Continuum Regime

Polydispersity for Dilute Concentrations

Averaged Self-preserving Size Distribution

Self-preserving Size Distribution depends on ϕ_s

期期期期間

Coagulation Accelerates with Increasing ϕ_s

ϕ_{s}	$eta_{\scriptscriptstyle LD}/eta_{\scriptscriptstyle dilute}$
0.01%	$\pm 0\%$
0.1%	+ 8%

$$\beta_{dilute} = 1.0734 \frac{8k_b T}{3\mu}$$

$$\frac{\beta_{LD}}{\beta_{dilute}} \approx 1 + \frac{2.5}{1 - \phi} \left(-\log\phi\right)^{-2.7}$$

Coagulation Accelerates with Increasing ϕ_s

LD simulations by Trzeciak et al. (2006) Counting particle collisions

Assumptions:

- · Constant particle diameter
- Monodisperse particles
- After collision one particle is redistributed

ϕ_{eff} Increases during Fractal Particle Growth

WIRTHING MI

Coagulation Kinetics Accelerate for D_f < 3

Eidgenössische Technische Hochschule Zürich

Swiss Federal Institute of Technology Zurich

NINITER CONTRACTOR

Conclusions

- Langevin dynamics have been used to determine the coagulation frequency (Brownian continuum) from first principles reproducing classic results at dilute conditions
- Particle growth accelerates at high concentrations (about 10 times at 20 vol%)
- Self-preservation was found up to 35 vol% for D_f = 3 but selfpreserving size distributions broaden for increasing φ_s
- For coagulation with D_f < 3 no self-preserving size distribution exists</p>

	D _f = 1.8	D _f = 3.0
LD simulation		
Vemury et al. (1994)	••••	•••••

31

ϕ_{eff} Increases during Fractal Particle Growth

26

WIRTHING MI

Coagulation Kinetics Accelerate for D_f < 3

$$D_f = 1.8$$
 $D_f = 3$
Light scattering measurements
during aeropelation of fractal
soot clusters:
Coagulation kinetics are more
than 2 orders of magnitudes
faster than predicted by the
classic dilute theory
(Sorensen et al., 1998)

 $\phi_{eff} > \phi_s$

WIRTHING MI

27

 $\phi_{eff} = \phi_s$

=

No Self-preserving Distribution Exists for $D_f < 3$

Production of Pyrogenic Silica

High precursor concentration:

 $(SiCl_4 / H_2 / O_2 / N_2) = 1.0 / 2.1 / 1.1 / 4.3$

Initial SiCl₄ mole fraction: $\phi_{SiCl4,0}$ = 12% SiO₂ solid volume fraction: 0.002% at 1500 K

(Hannebauer and Menzel, 2003)

Ullmann's Encyclopedia of Industrial Chemistry, *WILEY-VCH*, (2005)

Pyrogenic Silica

Company	Degussa	Cabot	Wacker
Product name	Aerosil	CAB-O-SIL	HDK
Surface area (m²/g)	90 - 380	130 - 380	110 - 440
Primary particle diameter (nm)	7.2 - 30.3	7.2 - 21.0	6.2 - 24.8
Hard agglomerate diameter (nm)		200 - 300	

01

4

Particle Growth by Coagulation

Initial concentration: y(SiCl₄) ~ 12 mol% $\phi_s(SiO_2) \sim 0.01\%$ @ 300 K

(Hannebauer and Menzel, 2003)

$$\frac{\partial n(v,t)}{\partial t} = \frac{1}{2} \int_{0}^{v} \beta(\tilde{v}, v - \tilde{v}) n(\tilde{v}, t) n(v - \tilde{v}, t) d\tilde{v}$$
$$-\int_{0}^{\infty} \beta(v, \tilde{v}) n(v, t) n(\tilde{v}, t) d\tilde{v}$$

Agglomerate and Primary Particle Size Definitions

Primary particle diameter

$$d_p = \frac{6V}{A}$$

$$\phi_{sol} = N_{aggl} n_p \frac{\pi}{6} d_p^3$$

 π

Agglomerate collision diameter

$$d_c = d_p n_p^{1/D_f}$$

$$\phi_{eff} = N_{aggl} \frac{\pi}{6} d_c^3$$
$$D_c \sim 1.8$$

Soft agglomerate of spherical particles

Hard agglomerate

Soft agglomerate

Nucleation, Coagulation and Sintering of Particles

Monodisperse Population Balance Model

Kruis et al. (1993)

- Balance of particle number, surface area and volume
- Neglecting particle size distribution

A DECKER AND AND A

Monodisperse Model for Chemical Reaction, Coagulation and Sintering

Total Number Concentration $\frac{dN}{dt} = -\frac{1}{2}\beta N^{2}\rho_{g} - \frac{d[SiCl_{4}]}{dt}$ Total Surface Area Concentration $\frac{dA}{dt} = -\frac{d[SiCl_{4}]}{dt}\alpha_{m} - \frac{1}{\tau_{s}}(A - N \cdot \alpha_{s})$ Total Volume Concentration $\frac{dV}{dt} = -\frac{d[SiCl_{4}]}{dt}v_{m}$

$$\tau_s = 6.5 \times 10^{-15} d_p \exp\left(\frac{8.3 \times 10^4}{T} \left(1 - \frac{d_{p,\min}}{d_p}\right)\right)$$

(Kruis et al., 1993)

Φ_{eff} Increases during Coagulation

$$\phi_{SiCl_4,0} = 12\%$$

T = 1500 K

Density SiO₂ particle: 2.2 g/cm³ Density combustion gas: 0.26 g/l

$$\phi_{solid} = 0.002\%$$

Coagulation of initially non-agglomerated particles $(d_p = 7.1 \text{ nm}, \text{SSA} = 380 \text{ m}^2/\text{g})$

Flame Hydrolysis of SiCl₄

NIN BERRENE

Flame Temperature and Precursor Conversion

Particle Size Evolution in Cold Flame

-

Eidgenössische Technische Hochschule Zürich

Swiss Federal Institute of Technology Zurich

Final particle size: $d_p = 7.1 nm$

 $\phi_{SiCl_4,0} = 12\%$

Particle Size Evolution

t ($\phi=1\%$) = 0.13 s t ($\phi=10\%$) = 5.1 s t ($\phi=1\%$) = 0.02 s t ($\phi=10\%$) = 0.19 s

$$\phi_{SiCl_4,0} = 12\%$$

Nama and a state of the state o

Degree of Agglomeration d_{c,H} / d_{p,H}

Consistent with Tsantilis and Pratsinis, Langmuir (2004)

 $\phi_{SiCl_4,0} = 12\%$

No of the lot of the l

No of the lot of the l

Evolution of ction 9 5 nm Cooling rate (K/s)x1000 100 10 $\varphi_{c,S}$ 1 0.1% 1% 10% a) t = 0.1 s b) t = 1 s 100% 0.1 1000 Cooling rate (K/s)x1000 100 10 1 c) t = 10 st = 1000.1 1700 1800 1900 2000 2100 2200 1700 1800 1900 2000 2100 2200 Maximum temperature, T_{max} (K) Maximum temperature, T_{max} (K)

00000

Na walking the state of the sta

Particle Size Evolution during SiO₂ Synthesis

Heine & Pratsinis (2006)

High Effective Agglomerate Volume Fraction

= 1

Eidgenössische Technische Hochschule Zürich

Swiss Federal Institute of Technology Zurich

Heine & Pratsinis (2006)

WIRTHING MI

Langevin Dynamics (LD) Simulations

Eidgenössische Technische Hochschule Zürich

Swiss Federal Institute of Technology Zurich

Equation of particle motion:

$$m_i \dot{\mathbf{v}} + \frac{3\pi\eta d_i}{C_i} \mathbf{v} + \mathbf{F}_{\text{Brownian}} = 0$$

Numerical solution procedure: Ermak and Buckholz (1980) Gutsch et al. (1995)

Validation of particle trajectories:

3 dimensional particle trajectories allow calculation of the diffusion coefficient D

$$3D = \frac{\langle \mathbf{x}^2 \rangle}{2t}$$

D is identical to theoretical value (±0.01%)

机机机机机的

Kinetics of Brownian Coagulation

Theory was derived for coagulation in colloidal suspensions is absence of a electrical double layer ("rasche Koagulation")

Collision frequency: (Brownian Continuum)

$$\beta_{i,j} = 2\pi \left(d_i + d_j \right) \left(D_i + D_j \right)$$

with $D_i = \frac{k_b T}{3\pi\mu_{fluid} d_i}$

M. Smoluchowski (1917)

No coalescence: $D_f < 3$

$$\phi_{eff} = N_{aggl} \frac{\pi}{6} d_c^3$$

 $\phi_{eff} \square \quad \text{for} \quad N \square$

Particle Growth by Coagulation

$$\frac{\partial n(v,t)}{\partial t} = \frac{1}{2} \int_{0}^{v} \beta(\tilde{v}, v - \tilde{v}) n(\tilde{v}, t) n(v - \tilde{v}, t) d\tilde{v}$$
$$-\int_{0}^{\infty} \beta(v, \tilde{v}) n(v, t) n(\tilde{v}, t) d\tilde{v}$$

Starting point of all particle population balances in suspensions and aerosols Solution techniques:

- Analytical
- Moment methods
- Sectional discretization
- Monte-Carlo

. . .

M. Smoluchowski (1916)

Langevin Dynamics Simulations

Equation of particle motion

$$m_i \dot{\mathbf{v}} + \frac{3\pi\eta d_i}{C_i} (\mathbf{v} - \mathbf{w}) + \mathbf{F}_{\text{Brownian}} = 0$$

Partial integration of particle motion

$$\mathbf{v}(t + \Delta t) = \mathbf{V} + \mathbf{v}(t)e^{-\alpha\Delta t}$$
$$\mathbf{r}(t + \Delta t) = \mathbf{R} + \mathbf{r}(t) + \frac{\mathbf{v}(t)}{\alpha}(1 - e^{-\alpha\Delta t})$$
with $\alpha = \frac{f}{m_p} = \frac{18\eta}{\rho_p d^2 C}$

V and **R** are stochastic components for particle velocity and displacement

Ermak and Buckholz (1980) Gutsch et al. (1995)

Correction of Monodisperse Coagulation

Monodisperse coagulation: (Brownian Continuum)

$$\frac{dN}{dt} = -\frac{\gamma}{2}\beta_{mono}N^2$$
$$\beta_{mono} = 8\pi dD = \frac{8k_BT}{3\mu_g}$$
$$\gamma = 1$$

Corrected coagulation kinetics: *Friedlander (2000)*

Kinetics form Langevin dynamics: (from 1 calculation)

$$\gamma_{theory} = 1.073$$

Polydispersity accelerates coagulation

$$\gamma = \frac{2}{\beta_{mono}} \frac{\frac{1}{N} - \frac{1}{N_0}}{t - t_0}$$

Coagulation Accelerates with Increasing ϕ_s

$$\beta_{LD} = 2 \frac{\frac{1}{N_2} - \frac{1}{N_1}}{t_2 - t_1}$$
$$\frac{\beta_{LD}}{\beta_{dilute}} \approx 1 + \frac{2.5}{1 - \phi} (-\log \phi)^{-2.7}$$
$$\beta_{dilute} = 1.0734 \frac{8k_b T}{3\mu}$$
$$\frac{\phi_s}{0.01\%} \qquad \frac{\beta_{LD}}{\beta_{dilute}} = 0\%$$

 $\pm 0\%$

+8%

0.1%

Namin Billing

Accuracy increases with Number of Particles

Polydispersity for "dilute" conditions

Averaged:	Friedlander and	
	Wang (1966)	
$\sigma_n \approx 1.45$	$\sigma_n = 1.44$	
$\sigma_{v} \approx 1.30$	$\sigma_v = 1.28$	

NI REAL PROPERTY OF

Sectional: $v_{i+1}/v_i = 2^{1/4}$ $\sigma_n = 1.448$ $\sigma_v = 1.307$

Self-preserving particle size distributions

Air properties: T = 293 K p = 1 bar

Particles: $d_0 = 1 \mu m$ $\rho_p = 1 g/cm^3$

 $\beta_{dilute} = 6.4 \times 10^{-16} \text{ m}^{3/\text{s}}$

Polydispersity for Dilute Concentrations

Langevin dynamics simulations: $\sigma_n \approx 1.45$ $\sigma_v \approx 1.30$

Vemury et al. (1994) $\sigma_n = 1.445$

Xiong & Pratsinis (1991) $\sigma_v = 1.28$

Self-preservation at high ϕ_s

No Self-preserving Distribution Exists for $D_f < 3$

Monodisperse Coagulation (Trzeciak et al., 2004)

Goal: determine $\beta_{mono}(d)$ at constant diameter and volume fraction

Monodisperse particles are randomly dispersed and move by Brownian motion

Eidgenössische Technische Hochschule Zürich

Swiss Federal Institute of Technology Zurich

Collision is counted

Particle size remains constant

Particle volume fraction remains constant One collision particle is redistributed either randomly or by preserving the average particle pair distribution function

Validation by averaged Particle Diffusivity

- Particle trajectories are calculated by integration of the equation of particle motion using the theoretical friction coefficient
- Diffusivity is calculated from average particle displacement

$$D = \frac{\langle x^2 \rangle + \langle y^2 \rangle + \langle z^2 \rangle}{6t}$$

Calculated diffusivity is compared to the theoretical diffusivity

Validation of Particle Diffusion

3 dimensional particle trajectories allow calculation of the diffusion coefficient D

$$3D = \frac{\langle \mathbf{x}^2 \rangle}{2t}$$

D is identical to theoretical value (±0.01%)

- Particle diameter 1000 nm
- Spherical particles in air at 20°C, 1 ATM
- Friedlander (1977)

 $D_{theory} = 2.77 \times 10^{-11} \text{ m}^2/\text{s}$