Differentiation between sources of particle-induced oxidative stress: surface area versus organic compounds

T. Stoeger, O. Schmid, K. Maier, S. Takenaka, H. Schulz.

Institute for Inhalation Biology, GSF-National Research Center for Environment and Health, Neuherberg-Munich, Germany

At present it is commonly hypothesised that the surface toxicity of soot particles originates from adsorbed redox-active components, which cause oxidative stress responses by reactive oxygen species (ROS) that in turn may lead to pulmonary or even systemic inflammation. In this study we address the question whether the inflammatory response of mice to particle

exposure can be predicted by the *in vitro* assessed oxidative potential of these particles. To this end we assessed the oxidative potency of six types of carbonaceous NPs (10 to 50nm in diameter; combustion and spark-discharge generated particles; 1 to 20% OC content) by measuring the consumption of an indicator antioxidant, ascorbic acid, in a cell free, physiologically buffered system. There was a good linear correlation between the in vitro oxidative potency of the different particles and their specific surface area. Furthermore, comparison of the oxidative in vitro effect and the in vivo inflammatory response (PMN influx into the lung 24h after intratracheal particle instillation) revealed a good linear correlation for five out of the six NPs investigated here, i.e., particle surface area can be directly related to the *in vitro* and *in vivo* response. The only exception was the SootH sample (high-OC flame soot; OC = 19%), for which the *in vitro* test underestimated its *in vivo* toxicity by a factor of 3. Since this was not observed for the other high OC sample investigated here (diesel exhaust particles (DEP); OC = 20%), the OC content alone could not account for this discrepancy. Hypothesizing that bioavailability of OC plays an important role, we searched for specific genetic expression markers by qPCR and immunoblotting of mouse lung samples to identify those particle types with bioavailable toxic organics. Among all candidates of inducible phase I and II detoxication enzymes our expression analysis detected only the cytochrome P450 oxidase Cyp1A1 to be significantly induced by the OC rich particles, namely SootH and weaker by DEP. Since metabolic activation of aromatic hydrocarbons by Cyp1A1 is known to generate intracellular oxidative stress, this suggests that bioavailibility of OC may contribute to the *in vivo* inflammatory response of NPs.

In summary, adequate prediction of *in vivo* particle toxicity based on *in vitro* tests requires an *in vitro* test for the oxidative potential related to particle surface area combined with a test for the bioavailibility of particle adsorbed bioactive compounds, such as Cyp1A1 expression.

Dr. Tobias Stoeger Institute of Inhalation Biology Phone: +49-89-3187-3104 Fax: +49-89-3187-2400 e-mail: tobias.stoeger@gsf.de http://www.gsf.de/ihb GSF - National Research Center for Environment and Health, GmbH Ingolstaedter Landstrasse 1 D-85764 Neuherberg / Munich Germany **11th ETH Conference on Combustion Generated Nanoparticles** Zurich, 13th - 15th August 2007

Differentiation between Sources of Particle-Induced Oxidative Stress: Surface Area versus Organic Compounds

Tobias Stoeger

National Research Center for Environment and Health Institute for Inhalation Biology

Particle Toxicity: *Hypothetical Mode of Action*

Sources of Particle Induced Oxidative Stress

? Can we differentiate sources of oxidative stress / inflammation?

Investigated Carbonaceous Nanoparticles

Investigated Carbonaceous Nanoparticles

Pigment Black	Spark Discharge	Flame Soot	Diesel Exhaust Particles
•Printex90	•UfCP	•SootH	•DEP
•PrintexG		•SootL	SRM1650a

Particle Characteristics

NPs	Diameter [nm]	Org. Content [%]	BET surface [m2/g]
DEP	25	20	108
PtxG	51	1	43
Ptx90	14	2	272
SootH	12	19	268
SootL	11	7	441
UfCP	10	17*	600

* rather <4%, Frampton 2004

In Vivo Toxicity in Mice Proinflammatory Effects of Intratracheal Instilled NPs

Surface Area Correlation

Surface Area Drives Pulmonary Inflammation

Surface Toxicity

		Dose:	Related to Number of:
•	Soluble Matter:	Mass	Reactive Molecules
•	Insoluble PM:	Surface Area	Reactive Surface Molecules

Is

Particle Surface Toxicity

a consequence of

Particle's Own Oxidative Properties?

How to Assess Oxidative Reactivity of Nanoparticles?

Oxidative potency of NPs assessed in a <u>cell free system</u>: Consumption of the anti-oxidative capacity of *ascorbate* as a measure for the oxidative surface reactivity.

Oxidative Potency Assessed by the Consumption of Vitamin C *In Vitro*

In Vitro Oxidative Potency as Predictor for Inflammatory *In Vivo* Response!?

Correlations: *In Vivo / In Vitro* Effects and Surface Area / *In Vitro* Effects

Only

SootH

⇒ Inflammatory response: not explained by oxidative potency⇒ Oxidative potency: not explained by particle surface area

Because of Organic Mass Content?

Pigment Black	Spark Discharge	Flame Soot	Diesel Exhaust Particles
•Printex90	•UfCP	•SootH	•DEP
•PrintexG		•SootL	SRM1650a

Particle Characteristics

NPs	Diameter [nm]	Org. Content [%]	BET surface [m2/g]
DEP	25	20	108
PtxG	51	1	43
Ptx90	14	2	272
SootH	12	19	268
SootL	11	7	441
UfCP	10	17 <mark>(4)</mark>	600
		TG-EGA	-MS

Conflict: OC-DEP = OC-SootH

! OC does not give information about bioavailability or "toxicity" of particle adsorbed compounds!

⇒ need for a biologic marker for bioavailability Expression Profiling to Identify Genes Suitable as Marker for Bioavailable Organics Lung RNA extraction 24h after Particle Instillation

Inflammation Pathway

Stress Response

Non of the Selected Inflammation & Stress Response Marker Seems Specific for Bioavailable Organics

Expression Profiling to Identify Genes Suitable as Marker for Bioavailable Organics

Lung RNA extraction 24h after Particle Instillation

Cyp1a1 as Marker for Bioavaliable Organic Compounds

Localization of Cyp1a1 by Immunohistochemistry

Immunhistological Detection of CYP1A1 Expression

Detection of CYP1A1 positive cells only in SootH, and to a weaker extend in DEP, but **not** in SootL instilled lungs.

Role of CYP1A1 in PAH-Detoxification

Diagram of Oxidative Stress During Phase

1 + 2 Detoxification

(Nebert et al., JBC 2004)

FIG. 4. Diagram of Phase I oxidative enzymes and Phase II conjugating enzymes that can be geographically subcellularly "tightly coupled" (top) or "loosely coupled" (bottom). R, any CYP1 substrate; RO', reactive intermediate; RO-Couj, inactive product. Both Phase I enzymes and Phase II enzymes can be membrane-bound, both can be cytoeolic, or one can be membrane-bound and the other cytosolic. Phase II metabolism includes glutathione S-transferases, UDP glucuronosyltranaferases, and various acetyl-, methyl- and sulfotranaferases (6, 10, 21, 59).

Gene	Pathway
Cyp1a1	detoxification phase I
Cyp1b1	detoxification phase I
Gclc	detoxification phase II
Gpx1	detoxification phase II
Gpx4	detoxification phase II
Gsr	detoxification phase II
Gsta1	detoxification phase II
Nqo1	detoxification phase II

Model for Particle Toxicity Related to Oxidative Stress

Possible Explanation of Discrepancy:

- "Active" carbon black surface coated with PAH.
 No ROS formation by PAH in cell free system (no Cyp1a1).
- ⇒ Reduced oxidative power of SootH

Biotransformation of surface bound PAH via Cyp1a1 generates ROS, which in turn induces inflammation.

⇒Enhanced inflammatory response to SootH

Conclusion:

Modelling Inflammatory Efficacy by One or Two Parameters

Thank You !

And special thanks to: Birgit Frankenberger, Bärbel Ritter, Konrad Maier, Shinji Takenaka, Wolfgang Kreyling, Otmar Schmid, Holger Schulz

National Research Center for Environment and Health

Institute for Inhalation Biology

