

Advanced High Porosity Ceramic Honeycomb Wall Flow Filters

Bilal Zuberi, James J. Liu, Sunilkumar C. Pillai, Jerry G. Weinstein GEO₂ Technologies, Inc.

Athanasios G. Konstandopoulos, Souzana Lorentzou, Chrysa Pagoura Aerosol & Particle Technology Laboratory, CERTH/CPERI

11th ETH Conference on Combustion Generated Nanoparticles Zurich, 13th-15th August 2007

Introduction to GEO₂

GE 2 Problem Statement: Increasing complexity of emission control

2007Aug14-Nanoparticle ETH Zurich

GEO₂ extruded honeycomb ceramics

$GE_{Technologies} 2$ GEO₂ filter has a uniform pore structure through the wall

2007Aug14-Nanoparticle ETH Zurich

Contents

□ Back pressure and filtration efficiency – steady state

□ Back pressure and filtration efficiency – transient

□ Uncontrolled regeneration – thermal shock resistance

□ Catalyst efficiency

Contents

☑ Back pressure and filtration efficiency – steady state

□ Back pressure and filtration efficiency – transient

□ Uncontrolled regeneration – thermal shock resistance

Catalyst efficiency

Filtration efficiency and backpressure benchmarking against Cordierite and SiC

Sample	Description
Α	GEO ₂ 200 cpsi DPF (Ø141mm x 153mm)
В	Commercial Cordierite 200 cpsi DPF (Ø144mm x 152mm)
С	Commercial SiC-based 300 cpsi DPF (Ø144mm x 153mm)

Steady state testing:

- 1.9L TDI common-rail engine
- 1500 rpm, 45 Nm

Transient testing:

• 6 NEDC cycles

Particle instrumentation employed

 SMPS - A Scanning Mobility Particle Sizing system (consisting of a Differential Mobility Analyzer and a Condensation Particle Counter); electrical mobility method; particles in the range of 10 to 430 nm.

• **ELPI** - An Electric Low Pressure Impactor; aerodynamic method; particles in the range of 30 nm to 8 mm.

• **CPC** - An standalone Condensation Particle Counter.

Each instrument sampled through a heated two-stage mini-diluter system (190 C), with a dilution ratio of 90

Pressure drop and filtration efficiency evolution

Size distributed Filtration efficiency during soot loading

Contents

□ Back pressure and filtration efficiency – steady state

☑ Back pressure and filtration efficiency – transient

□ Uncontrolled regeneration – thermal shock resistance

Catalyst efficiency

Filter A: NEDC cycle soot loading, backpressure and filtration efficiency

Backpressure and Filtration over NEDC cycles

- 14 -

Contents

□ Back pressure and filtration efficiency – steady state

□ Back pressure and filtration efficiency – transient

☑ Uncontrolled regeneration – thermal shock resistance

□ Catalyst efficiency

Uncontrolled regeneration (Ø141mm x 153mm) Temperature profiles and thermal shock

Process:

- 1. Load predefined soot mass load (10g/m² and 15g/m²) without a DOC upstream of filter
- 2. Place DOC upstream of filter
- 3. Set engine to the steady state operation point of 1500 rpm and 75 Nm BMEP (corresponding to 340°C filter inlet temperature)
- 4. Engine exhaust temperature is increased to 650°C with the means of HC port injection upstream of the DOC
- 5. Drop to idle

The increased exhaust oxygen content, the high filter temperature and the small exhaust mass flow rate lead to a very rapid filter regeneration (worst case regeneration).

Soot loading behavior; pressure drop vs. mass loading

Placement of thermocouples for temperature profiling

GE 2Uncontrolled Regeneration: temperature profiles at 15g/m²

- 19 -

Uncontrolled regeneration – $10g/m^2$ and 15 g/m^2

No visual defects & no change in permeability Filters intact and survive the thermal shock

GEO₂ filters survive >1400C temperature excursions during uncontrolled regenerations

Contents

□ Back pressure and filtration efficiency – steady state

□ Back pressure and filtration efficiency – transient

□ Uncontrolled regeneration – thermal shock resistance

☑ Catalyst efficiency

Backpressure and soot regeneration on catalyzed filters *filter size: (Ø 25 mm x 50 mm)*

Commercially catalyzed sample:

SiC 200 cpsi, 3 g/m² Pt on Al₂O₃ catalyst load

In-house coated sample:

 GEO_2 200 cpsi, 3 g/m² Pt on AI_2O_3 catalyst load

 In-house coated sample: SiC 200 cpsi, 14 g/m² base metal catalyst load

In-house coated sample:

GEO₂ 200 cpsi, 14 g/m² base metal catalyst load

Pressure drop vs. challenge mass load: Pt coated samples

GEO₂ coated sample has significantly lower pressure drop upon loading

GE 2 NO/NO₂ assisted soot oxidation rate on Pt coated samples

GEO₂ coated sample has higher NO/NO₂ assisted soot oxidation rate

NO Conversion on Pt coated samples

Pressure drop vs. challenge mass load Base metal coated samples

Direct catalytic soot oxidation

Advanced high porosity composite filter materials have been developed for wall flow DPF applications:

- ☑ Uniform microstructure, interconnected pore-architecture
- ☑ Oxide and non-oxide chemistry
- ✓ High porosity with strength/robustness
- **☑** Low backpressure
- ☑ High steady state and transient filtration efficiency
- ✓ Filter survives uncontrolled regeneration at >15g/m² soot loading
- ☑ Compatibility with catalysts
- ☑ Application in multi-functional filters
- ☑ Potential for filter size reduction and/or PGM reduction

** Thank you for your time **

Bilal Zuberi, Ph.D. Vice President, Product Development GEO2 Technologies 12-R Cabot Rd, Woburn, MA USA Ph: +1 (617) 922-6124 bzuberi@geo2tech.com

http://www.geo2tech.com