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Abstract: Ultra-fine particle emissions from diesel-fueled vehicles have a major impact on 
the respiratory air quality at work places. Diesel soot particles, with typical diameters of 10-
200 nm, are small enough to pass the alveolar membrane, reaching the blood system. 
Diesel soot is rated as carcinogenic to humans and is acting as a carrier for several 
carcinogenic, mutagenic, and endocrine-disrupting compounds.  
Diesel particulate filters (DPFs) are a promising technology to detoxify diesel exhaust. 
However, the post-combustion of trapped soot and adsorbed compounds may also induce 
the formation of new pollutants. The Swiss VERT procedures for DPF approval not only 
include a thorough evaluation of the filtration efficiency, they also require a comprehensive 
assessment of toxic compounds potentially formed in the catalytic converter (VERT 
secondary emission test, VSET). This includes an assessment of the de novo formation 
potential of polychlorinated dibenzodioxins/furans (PCDD/F), a detailed analysis of DPF-
effects on known genotoxic compounds, and an analysis of metal penetration either from 
fuel additives or catalytic coatings [1]. Details on the currently applied VERT procedures 
are now documented in a Swiss national standard [2]. 
Herein we report effects of two cordierite-based, monolithic, wall-flow DPFs on the 
emissions of genotoxic polycyclic aromatic hydrocarbons (PAHs), assess the risks of a 
trap-induced nitro-PAH formation, and compare these findings with those of two reporter 
gene bioassays sensitive to aryl hydrocarbons (AHs) and to estrogenic compounds. Soot 
combustion was either catalyzed with an iron- or a copper/iron-based fuel additive (fuel-
borne catalysts). A heavy duty diesel engine, operated according to the 8-stage ISO 
8178/4 C1 cycle, was used as test platform.  
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Emissions of all investigated 4- to 6-ring PAHs were reduced by about 40-90%, including 
those rated as carcinogenic. Emissions of 1- and 2-nitronaphthalene increased by about 
20-100%. Among the 3-ring nitro-PAHs, emissions of 3-nitrophenanthrene decreased by 
about 30%, whereas 9-nitrophenanthrene and 9-nitroanthracene were found only after 
DPFs. In case of 4-ring nitro-PAHs, emissions of 1-nitropyrene, 4-nitropyrene, and 3-
nitrofluoranthene decreased by about 40-60% with DPFs [3].  
Total AH-receptor (AHR) agonist concentrations of diesel exhaust were lowered by 80-
90%, when using iron- and copper-based DPFs [4]. The tested PAHs accounted for <1% 
of the total AHR-mediated response, indicating that considerable amounts of other aryl 
hydrocarbons must be present in filtered and unfiltered diesel exhaust. We conclude that 
both DPFs substantially detoxified diesel exhaust with respect to total aryl hydrocarbons, 
including the investigated carcinogenic PAHs. But we also noticed a secondary formation 
of certain nitro-PAHs. Nitration reactions were found to be stereoselective with a 
preferential substitution of hydrogen atoms at peri-positions. The stereoisomers obtained 
are related to combustion chemistry, but differ from those formed upon atmospheric 
nitration of PAHs [3]. Similarly, the estrogenic activity of filtered and unfiltered exhaust 
were compared with an estrogen-receptor (ER)-based bioassay [5]. Both DPFs lowered 
the estrogenic activity by 55% and 66%, respectively, indicating that the majority of 
estrogen-like compounds are successfully removed in the filters [5]. 
The PCDD/F formation potential of both traps has been assessed as well and reported 
before [6]. As the major finding, we showed that the iron-catalyst DPF did not support a 
PCDD/F formation, even under worst case conditions, whereas the copper-based system 
clearly catalyzed a de novo formation of PCDD/Fs. Emissions increased by up to three 
orders of magnitude. This substantial increase of the PCDD/F emissions in case of the 
copper-catalyzed DPF was decided to be unacceptable [7]. Consequently, only the iron-
system was recommended for approval, and the copper-catalyzed trap was excluded from 
the VERT-filter list [8]. 
Based on such findings, VERT-approved DPFs are now considered as best available 
technology to reduce both, soot particles and genotoxic PAHs such as benzo(a)pyrene 
from diesel exhaust. Consequently, several national occupational health authorities 
responsible for respiratory air quality at work places such as mining and tunneling, have 
decided that DPF use is mandatory for certain applications [9]. 
The presented data indicates that a comprehensive assessment of current and future 
exhaust gas treatment systems should also include investigations on a secondary 
formation of toxic pollutants (secondary poisoning).  
Toxic secondary pollutants can also form in other exhaust gas treatment systems, e.g. an 
intense formation of ammonia in noble metal-based three-way catalysts has been reported 
[10,11]. Currently, several deNOx-technologies are developed for diesel vehicle 
applications. Especially the selective catalytic reduction system (SCR), relying on the 
thermal decomposition of urea to ammonia, the latter is used as the reducing agent for 
NOx reduction, has the potential for additional secondary pollutants not yet considered. 
Therefore, we strongly emphasize the need of a comprehensive risk assessment for such 
new catalytic DeNOx-systems as well, possibly prior to mass distribution [12].  
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Secondary effects of catalytic DPFs:
Conversion of PAHs vs. formation of Nitro-PAHs

Relevance of secondary pollutants 

Heraclitus’ philosophy in two words: 

“panta rei” 

Everything flows

or

There is nothing permanent except change

Heraclitus (ca. 540 B.C. - 475 B.C.)
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Relevance of secondary pollutants 

Heraclitus’ philosophy in two words: 

“panta rei” 

Everything flows

or

There is nothing permanent except change

or 

from a chemist’s perspective:

There must be a lot of chemistry involved 
to convert a black cloud of diesel exhaust 

into colorless CO2 and H2O

Heraclitus (ca. 540 B.C. - 475 B.C.)

The particulate trap - a chemical reactor

What are the products of soot combustion and what are their health effects?

VERT-goals:

Problems:

Benefits and Risks of current trap technology

Effects of toxic exhaust gas constituents

Diesel exhaust contains dozens of carcinogenic, 
mutagenic, and hormone-like compounds
Diesel nanoparticles (<100 nm) penetrate cell mem-
branes (alveoli, blood cells) acting as Trojan horses

Do DPFs detoxify diesel exhaust?

Effectiveness of DPFs on particles

Potential for secondary emissions (poisoning)
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Catalytic decomposition of diesel soot

Combustion products of carboneous diesel soot?

Conversion of  particulate matter

Genotoxic polycyclic aromatic hydrocarbons

What about emissions of genotoxic PAHs?
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Six PAHs are carcinogenic according to WHO

Carcinogenic PAH
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Two are precursors for mutagenic nitro-PAHs
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Carcinogenesis from benzo(a)pyrene

Oxidative metabolic activation of benzo(a)pyrene
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Carcinogenesis from benzo(a)pyrene

Catalytic decomposition of diesel soot

Carcinogenic PAHs
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What about benzo(a)pyrene with an ambient air threshold level of 1 ng/m3?

Heeb et al. ES&T, 2008, 42, 3773-3779
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Carcinogenic PAHs
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Heeb et al. ES&T, 2008, 42, 3773-3779

Efficient filtration of benzo(a)pyrene from 18 to 4 ng/m3

Carcinogenic PAHs
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The particulate trap - a chemical reactor

What about nitration of PAHs in NOx-rich diesel exhaust?

Nitration of PAHs

pyrene

The particulate trap - a chemical reactor

pyrene 1-nitropyrene

In one step from a harmless precursor to a mutagen?

Nitration of PAHs
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The particulate trap - a chemical reactor

Regioselective nitration of pyrene

Nitration in alpha-position?

The particulate trap - a chemical reactor

Regioselective nitration of pyrene

or in beta-position?
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The particulate trap - a chemical reactor

Regioselective nitration of pyrene

or in gamma-position?

The particulate trap - a chemical reactor

Two of the three isomers are mutagenic.
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The particulate trap - a chemical reactor

If nitration is possible ones, why not twice?

Nitration of nitropyrenes
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The particulate trap - a chemical reactor

The most potent direct-acting mutagens known are dinitropyrenes
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- 50%

The aryl hydrocarbon receptor

Effect-based risk assessment with bioassays: A alternatives to chemical analyses

DNA-binding transcription factor:

Cyctosolic transcription factor (DNA-binding protein, 
805 AS, ~90’000 amu, basic helix-turn-helix motive)
Ligand-binding domain (PAS-B, AS230-397)
Ligand-AHR complex migrates to nucleus and binds DNA
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The AHR mode of action

Ligand binding to the AHR triggers a cascade of fundamental reactions

Specific molecular recognition

The key-lock principle:

We do not know the protein structure yet but we know some of the keys that bind to it
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Specific molecular recognition

The key-lock principle:

We know some of the keys so we can guess how the lock looks like?

Specific molecular recognition

The key-lock principle:

2,3,7,8-TCDD, the so-called Seveso dioxin, is the ligand with the highest AHR affinity 
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Specific molecular recognition

The key-lock principle:

We know some of the keys so we can guess how the lock looks like?

Specific molecular recognition

The key-lock principle:

Pyrene is a poor ligand with a 70’000 fold weaker AHR-affinity than 2,3,7,8-TCDD
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Specific molecular recognition

Affinity of some aryl hydrocarbons:

We know some of the keys and their affinity to the AHR. They are all PAH-like!
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Wenger et al. ES&T, 2008, 42, 2992-2993Heeb et al. ES&T, 2008, 42, 3773-3779

Bioassay-supported benefit/risk assessment of DPFs
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The particulate trap - a chemical reactor

Do DPFs detoxify diesel exhaust?

Secondary effects of catalytic DPFs:
Conversion of PAHs vs. formation of Nitro-PAHs

The particulate trap - a chemical reactorSecondary effects of catalytic DPFs:
Conversion of PAHs vs. formation of Nitro-PAHs

Panta rei, or the long way from diesel soot to CO2 and H2O!

Results:

Conclusions:

Current DPF technology (>30 traps) reduces
emissions of PAHs including the genotoxic ones

Certain Nitro-PAHs are formed in certain DPFs, but
nitration is not a general trend and does not outrange
the overall reduction of AHR-agonist emissions

All VERT-approved DPFs are efficient sinks for 
soot particles and genotoxic PAHs
Formation of toxic secondary pollutants is possible,
and risks should be assessed before DPF approval.
Consider the Swiss filter list before retrofitting
(http://www.umwelt-schweiz.ch/buwal/eng/fachgebiete)
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Was there a question not answered yet? 

Thanks: to the VERT team: A. Mayer, TTM, Niederrohrdorf
Prof. J. Czerwinski, L. Petermann, Uni. Appl. Sci., Biel
G. Durbano, M. Wyser, Swiss Fed. Office for Envir. (BafU), Bern

to my Empa colleagues: M. Kohler, P. Schmid, D. Wenger, 
R. Haag, P. Honnegger, E. Guyer, C. Seiler, M. Zennegg, 
A. Wichser, A.Ulrich, L. Emmenegger, 

for your attention

Secondary effects of catalytic DPFs:
Conversion of PAHs vs. formation of Nitro-PAHs

How to deal with risks of a secondary formation of pollutants? 

Outlook

- Toxic secondary emissions are of relevance

- Benefits and risks of a new technology have to be
assessed before its wide application, in case of 
retrofitting, Swiss legislation requires VERT 
approved technology

Lessons to learn from VERT:

- Combined DeNOx- and trap-technolgies have
to be assessed as well. 

The importance of secondary pollutants




