12th ETH-Conference on Combustion Generated Nanoparticles June 23rd - 25th 2008

Paper/Poster-Abstract Form

Name of Author:...Christer Johansson Co-Authors...Lars Burman, Bertil Forsberg Affiliation... Department of Applied Environmental Science, Stockholm University Mailing address ...106 91 Stockholm, Sweden Phone / Fax...+46 709 38 30 86..... E-mail...christer@slb.nu

Title: Effects on emissions, air quality and health of congestion charging and the low emission zone in Stockholm

NOTE: this presentation is for the FOCUS EVENT on LEZ Wednesday 25th, 14.00-17.30

Abstract: (min. 300 - max 500 words)

The abstracts for papers and posters should contain unpublished information on the research subject, the investigation methods and results obtained so far. Graphs and references are very welcome. During your presentation at the conference you may expand on this with additional data and results. General information on products which are already commercially available are not the focus of the presentations but are very welcome at the exhibition.

2 page Abstract:

Effects on emissions, air quality and health of congestion charging and the low emission zone in Stockholm

In Swedish studies traffic exhaust effects on acute effects on asthmatics has been seen (Forsberg et al., 1998). Also longterm exposure with NO2 as marker has associations been shown with the prevalence of respiratory problem (Forsberg et al., 1997), lung cancer incidence (Nyberg et al., 2000), deaths in myocardial infarction (Rosenlund et al., 2006) and incidence of adult asthma (Modig et al., 2006). In Stockholm both the EU-directive for PM10 (Norman & Johansson, 2006) and the national limit value for NO₂ (98-percentile of daily mean values) are exceeded along several roads in the city. On June 2, 2003, Stockholm City Council proposed testing congestion charging of traffic — the Stockholm Trial. On June 16, 2004 the Swedish Parliament, the Riksdag, adopted the Congestion Charge Law (SFS 2004:629). The Stockholm Trial consisted of three parts: extended public transport, congestion tax and more park-and-ride sites in the city and the county. Today congestion charging is a permanent system in Stockholm. In addition, Stockholm has a special low emission zone that applies to heavy duty trucks and buses. The effect of the Stockholm Trial on emissions and levels of air pollutants is presented as well as the estimated consequences for health. The impact of the low emission zone will also be discussed.

The effects of the Stockholm Trial on air quality and health have been assessed by using estimates of emissions from road traffic. The total road use, i e the number of vehicle kilometres driven within a specific area was estimated partly with a statistical method and partly by using model calculations. Levels and exposure was obtained using an air quality dispersion model. Population data with a high spatial resolution, 100×100 m grids for the whole region together with model calculated changes in air pollutants concentrations. The health impact assessment (HIA) presented is restricted to long-term effects on mortality, and uses the same approach as used by for example WHO and Swedish national assessments (Forsberg et al, 2005).

The average levels of nitrogen oxides (NOx) are estimated to fall by at most 5-10 μ g/m³ and the levels of particles, PM10 by at most 2-3 μ g/m³. The levels of air pollutants increase in an area around the tollfree bypasses. The EU limit values for both PM10 and NO₂ would still be exceeded along the most densely trafficked streets. But as a whole, considerably more people in Stockholm experienced reductions in air pollutants and better air quality compared with those who experienced increased levels.

Figure 1. Changes in levels of particles (PM10, mean annual levels) with the Stockholm Trial compared with levels without the congestion charge for 2006.

Studies from Holland, New Zealand, France and Norway (Hoek et al., 2002; Scoggins et al., 2004; Filleul et al., 2005; Nafstad et al., 2004) have shown an increase in mortality of 12%, 13% and 14% per 10 μ g/m³ increase in nitrogen dioxide, NO₂, respectively. The Norwegian study, was considered the most relevant for the consequence analysis of the effects of the Stockholm Trial. In that study they arrived at an increased premature mortality of 8% per 10 μ g/m³ increased level of nitrogen oxides, NOx. Then the reduction in level in Greater Stockholm area (1.44 million inhabitants), is expected to result in approx. 20 to 25 fewer premature deaths per year.

Conclusions

The "Stockholm Trial" involved a road pricing system to improve the air quality and reduce traffic congestion. With charges for vehicles during weekdays (only daytime and most expensive during rush-hours) it resulted in a 15% reduction in total traffic volume in Stockholm's inner city. The emissions of particles and nitrogen oxide from road traffic fell by 8%-12% in Stockholm's inner city (inside the charged cordon). With a permanent congestion tax, both the average particle levels for the population of Stockholm and the nitrogen oxide levels would be some percent lower as annual average. The limit values for both PM10 and NO_2 would still be exceeded along the most densely trafficked streets. Based on the calculated reduced population exposure the lowered number of premature deaths was estimated using an exposure-response factor for NOx. Despite relatively small changes in total concentrations, it is estimated that between 25 and 30 premature deaths would be avoided as a result of a reduction in long-term exposure to particles. NOx is merely regarded as an

indicator of traffic exposure. This is only the tip of the ice-berg since improvements in both airway and cardiovascular disease is expected to be reduced as well. This study demonstrates the importance of not only assessing the effects on air quality, but also to make quantitative estimates of health impacts, in order to justify actions to reduce air pollution.

Nafstad P, Haheim LL, Wisloff T, Gram F, Oftedal B, Holme I, et al. Environ Health Perspect. 2004;112 (5):610-5.

Gehring U, Heinrich J, Kramer U, Grote V, Hochadel M, Sugiri D, et al. Epidemiology. 2006;17(5):545-51.

Hoek G, Brunekreef B, Goldbohm S, Fischer P, van den Brandt PA. Lancet. 2002;360(9341): 1203-9.

Scoggins A, Kjellstrom T, Fisher G, Connor J, Gimson N. Sci Total Environ. 2004;321(1-3):71-85.

Forsberg B, Stjernberg N, Linne R, Segerstedt B, Wall S. Eur Respir J. 1998;12(4):900-5.

Nyberg F, Gustavsson P, Järup L, Bellander T, Berglind N, Jakobsson R, et al. Epidemiology. 2000;11(5):487-95.

Rosenlund M, Berglind N, Pershagen G, Hallqvist J, Jonson T, Bellander T. Epidemiology. 2006;17 (4):383-90.

Modig L, Järvholm B, Rönnmark E, Nyström L, Lundbäck B, Andersson C, et al. Eur Respir J. 2006;28 (1):75-81.

Filleul L, Rondeau V, Vandentorren S, Le Moual N, Cantagrel A, Annesi- Maesano I, et al. Occup Environ Med. 2005;62(7): 453-60.

Short CV:

Christer Johansson is an associate professor (Docent) at the department of Applied Environmental Science, Stockholm University, where he is a supervisor of PhD students and the principal investigator of several research projects in the field of urban air quality.. He defended his Ph.D at the department of Meteorology, Stockholm University, 1988. He is also employed at Environment and Health Administration, City of Stockholm as an Environmental Officer.

Return by Email latest 28th of March 2008 to ttm.a.mayer@bluewin.ch

Effects on air quality and health of congestion charging and the low emission zone in Stockholm

Christer Johansson

Environmental officer at EHA, Stockholm

also Associate professor at the Department of Applied Environmental Science, Stockholm University

Outline

- Background
 - Congestion a big problem
 - Air quality in Stockholm illegal
- Congestion charge
 Stockholm trial
- Low emission zone
 HDV emissions of NOx, PM-exhaust
- Health efficiency of other measures

Bottlenecks in road network, lack of N-S connections

Exceedances of EU limit values for PM10 and NO₂

Main objectives...

Reduce traffic volumes10-15 % during rush hours

Reduce emissions of

carbon dioxide, nitrogen oxides and particles

• The residents of Stockholm should perceive an **improvement in the urban environment**

Extensive evaluation

• 25 Reports:

- Commuting, travel times, public transport, bicycle rides
- Traffic volumes, traffic jam, traffic security
- City environment, noise, air quality, emissions, health
- Taxi, delivery services, road maintenance, children's acitivities
- Economical analyses, cost- benefit, regional economy

http://www.stockholmsforsoket.se

The Stockholm Trial

EFFECTS ON AIR QUALITY AND HEALTH

(SLB-analys

18 automatic toll stations

- Jan 3 Jul 31, 2006
- More park- and ride sites
- Extended public transports

Time of day (weekdays)	Tax	(In other currencies)
00:00 - 06:29	0 SEK	
06:30 - 06:59	10 SEK	1.09 EUR, 1.48 USD
07:00 – 07:29	15 SEK	1.63 EUR, 2.23 USD
07:30 – 08:29	20 SEK 2	2.17 EUR, 2.97 USD
08:30 – 08:59	15 SEK	
09:00 – 15:29	10 SEK	
15:30 – 15:59	15 SEK	Maximum amount per
16:00 – 17:29	20 SEK	vehicle and day – 60 SEK
17:30 – 17:59	15 SEK	- 0.30 EUK
18:00 – 18:29	10 SEK	
18:30 – 23:59	0 SEK	
SLB-analys	MILJÖFÖRV	ALTNINGEN

Methodology

Calculations

Traffic change & emissions

Air quality

Exposure & health effects

Measurements

Traffic Air quality Meteorology

Substantial decline in traffic

-22 % = -100 000 passages

Inner city: 15 % less total vehicle kms

. 4 . 2

5.

Goal was achieved!

(((SLB-analy

OCKHOLMS OCH UPPSALA

-26 %

-6 000 fordon

Increased traffic on highway connecting north – south & tunnel connecting east – west

Figure 2. Change in traffic volumes (weekdays, 24-hour period), April 2005 compared to April 2006.

Goal was achieved!

Decrease in city centre 2006 [.]	tonnes/ year	%
Nitrogon oxidos NOx	15	85
Nillogen Uxides, NOX	40	-0,5
Carbon monoxide, CO	670	-14
Particles, PM10 total	21	-13
" wear particles	19	-13
" exhaust particles	1,8	-12
Hydrocarbons, VOC	110	-14
" benzene	3,4	-14
Carbon dioxide, CO ₂	38 000	-13

7					
Zone		Skillnad i %			
Tidsperiod	Pb	Llb	Tlb	Buss	Totalt
06-09	-19,1	-17,4	-4,5	34,8	-17,4
09-15	-18,9	-12,3	-8,8	17,3	-16,9
15-18	-18,8	-19,3	-6,9	21,3	-17,8
18-06	-10,9	-13,5	-10,7	7,1	-10,7
00-24	-16,5	-15,0	-7,8	18,4	-15,5

PM10 changes

Roof level, city centre ca 2 % decrease

Street level, city centre 4-8 % decrease

PM exhaust particle changes

Skillnad i partikelhalt (avgaspartiklar), µg/m³

Roof level, city centre 5-6 % decrease

Street level, city centre 5-10 % decrease

NOx changes

Small changes in population mean concentrations

Greater Stockholm area (1.44 million people; 35x35 km)

	No trial	Trial	Difference
NOx	4.42	4.19	0.23 (-5.3%)
PM10	1.71	1.65	0.064 (-3.8%)
PM exhaust	0.102	0.0960	0.0062 (-6.1%)

Exposure response factor, PM2.5

6% increased mortality per 10 μg/m³ PM2.5

Exposure response factors: NO₂ & NOx

- For long term mortality for different populations and subgroups:
 - per 10 μg/m³ NO₂
 - Holland: 12%
 - Germany: 17%
 - New Zeeland: 13%
 - France: 14%

(Hoek et al., 2002)(Gehring et al, 2006)(Scoggins et al. 2004)(Filleul et al., 2005)

- per 10 μg/m³ NO_x

Norway: 8 ± 3 %
 increased cardio-vascular mortality

(Nafstad et al., 2004)

((SLB-analys

NOx and PM-exhaust highly correlated

Population weighted reduced exposure of NOx...

Assuming:

. . .

Permanent system

Sustained effect of Trial on traffic

Long term mortality effects if Stockholm trials are permanented

- Reduced exposure based on population weighted decrease of NOx concentrations
 - Decrease of 0,23 ug/m3
 - -1.44 million residents
 - Baseline mortality: 1000/100 000
 - Expected to give 26 (20 36) fewer premature deaths per year

Limit values for PM10 and NO2?

After the Trial...

(((SLB-analys

Permanent system from Aug 1st

- Similar system as the congestion tax trial (area, control points, charging, extended public transports...)
- The revenue will go entirely to new road constructions around Stockholm.
- The congestion tax is deductible for both private individuals and businesses.

Cost benefit surplus

- Cost: SEK 2.6 billion
- Annual surplus: SEK 760 million
 - Shorter travel times (SEK 600 mill)
 - Increased road safety (SEK 125 mill)
 - Health & Environment (SEK 90 mill)
 - Revenues (SEK 550 mill)
- 4 years payback time

The goals were achieved

- "10 15 % mindre trafik till/från innerstaden"
- - Blev 20-25%
- • "Ökad framkomlighet"
- – Kötiderna ner 30-50% i och kring innerstaden
- – Essingeleden ung. som förut
- • "Minskade utsläpp"
- – 14% mindre i innerstaden; 2,5% i länet
- • "Invånarna ska uppleva att stadsmiljön förbättras"
- – Oklart svårt att definiera och mäta

Conclusions

- Large traffic reduction
- Lower emissions
- Small effect on concentrations
- Expect big effect on health
- Cost-effective measure

The Environmental Zone in Stockholm

Ladugårdsgärdet

Östermalm

Kungsholmen

Vasastaden

Gamla Stan

Djurgården

Södermalm

Rule: HDV not older than 6 years

Year of registration	As per general rule	Euro 2	Euro 3	Euro 4 + adapted vehicles	Euro 5 + EEV + adap- ted vehicles
1998	2004	2006			
1999	2005	2007			
2000	2006	2008			
2001	2007	2009	2009		
2002	2008		2010		
2003	2009		2011		
2004	2010		2012		
2005	2011		2013	2016	
2006	2012		2014	2016	2020
2007	2013			2016	2020
2008	2014			2016	2020
2009	2015			2016	2020
2010	2016				2020

SLB

Harald Scheilinger busschaufför

FILSEOSCI AD

190.5

in thick

Effect on PM exhaust emissions

% reduction in concentrations of NO2 & PMexhaust

Control 2007:

9% illegal

younger fleet than expected

(((SLB-analys

Effect of other measures compared to congestion charge

- Higher fuel tax
 - General reduction in traffic/emissions both exhaust & non-exhaust
 - Lower efficiency for health compared to congestion charge
- Parking: higher fees/taxes/restrictions
 - Possibly similar effects as congestion charge
- Environmental zone
 - Mainly exhaust emissions
 - PM10 EU limit still a problem
- Studded tire restrictions
 - No effect on exhaust particles
 - PM10 could be met...
- Dust binding (spring)
 - Local and short effect on high levels
 - High PM10 lowered

Thank you for your attention!