

Particle Number and Particulate Mass Emissions Measurements on a Euro VI DPF and SCR-equipped Heavy-duty Engine using the PMP Methodologies

Objectives of the AECC heavy-duty Euro VI test programme

 Demonstrate the performance of an integrated emissions control system on a modern, low NOx engine to be less than 0.4g/kWh from the ETC Cycle

Experimental Background

Background to Improved PM and PN Measurement Procedures

- In the mid-1990's it was widely recognised that the current filter-based mass measurement method is at or near its limit of detection for the cleanest Diesel engines and vehicles
- European Govts: Germany, Switzerland, UK, France, Holland, Sweden wished to enforce DPFs to eliminate carbon
- Strong relationship between carbon and negative health events
- Substantial historical data

AECC heavy-duty Euro VI test programme

- Engine designed for US2007, provided by an engine manufacturer
- 6 cylinder 7.5 litre engine
- Common rail
- Turbocharged (fixed vane)
- Max. injection pressure 180Mpa
- Cooled lambda-feedback EGR.

Detailed Preconditioning Procedures Employed to Ensure Consistent ECS State for Each Day's Testing

- For repeatability, the daily test regime started with a cold start test (WHTC, FTP or NRTC) and finished with a standard preconditioning regime.
- The end-of day preconditioning consisted of

- mode 4 warm-up:	15 min.	2130 rev/min.	560 Nm
- followed by:	60 min.	2575 rev/min.	700 Nm
- then:	60 min.	1300 rev/min.	150 Nm

Following each test cycle the engine was run at a Mode 4 standardisation

- Compare current European gravimetric and heavy-duty Particle Measurement Programme (PMP) methods for particulate mass (PM).
- Assess heavy-duty PMP particle number methodology.
- Provide data on European, World-harmonised and other major test procedures.

High Efficiency Wall-Flow DPF Employed

PMP Particle Number Results for ETC & WHTC Show >99% Filtration Efficiency

Particle Numbers Measured From Transient Operation Are Almost Independent of Cycle – DPF 'Flattens' emissions

1.0.E+13

۲

PMP Programme started to explore new methods for the "development of improved type-approval test protocols for assessing vehicles fitted with advanced particulate reduction technology that would complement or replace the current legislative measurement procedure for particulate mass"

Particle Number Measurements Made to Latest **PMP** Protocol

- Particle measurements from all tests according to the latest draft of the heavy-duty PMP inter-laboratory correlation exercise guide
- Particle number measured engine-out on additional tests from partial flow system
 - measurements from Horiba MDLT.
- Delivers
 - Particle number emissions.
 - Real-time particle emissions traces
 - DPF filtration efficiency for solid particle numbers.
- PMP does not currently address particle number from partial flow, hence no partial flow tailpipe number measurements.

• Emissions control system provided by AECC:

- Oxidation catalyst (DOC), catalyst-based particulate filter and urea-SCR with ammonia slip catalyst (ASC).

• Fluids:

- Diesel reference fuel CEC RF-06 (max. 10ppm S)
- Low ash 10w-40 engine lubricant
- AdBlue[®] aqueous urea to DIN 70070 specification.

Multiple Particulate Mass Measurement Methods Used Simultaneously

• 3 particle mass methods were tested.

- Partial flow system using mini dilution tunnel (MDLT)
 - Sample taken directly from exhaust, before CVS system and diluted (variable rate) in the MDLT before collection on sample filter.
 - current legislation allows this system to be used as alternative to full flow.

Current full-flow legislative method

Diluted sample taken from the CVS system, further diluted in 2nd tunnel, sample collected onto 70mm TX40 filter paper from this secondary tunnel.

condition for 15 minutes.

Pre-test conditioning

- WHSC:

- ETC, JE05, ESC: 7.5 min. mode 4 (2130 rev/min, 560 Nm)
 - 10 min. mode 9 (1816 rev/min, 373 Nm) followed by 5 min. soak.

PMP method

- Sample is taken from the secondary dilution tunnel, as for current method.
- Same principle as current method, but with improved control such as single TX40 sample filter, smaller (47mm) filter, tighter temperatures controls etc.

PMP Particle Number System Employs Heating, Dilution and Size Classification to Define the Particle Measured

Authors

Jon Andersson, John Kasab, Andrew Nicol, **Chris Such** Ricardo UK (www.Ricardo.com) John May, **Dirk Bosteels** AECC (www.aecc.eu)

Schematic of Test Engine, Emissions Control Systems, Measurement and Emissions Sampling Locations

C-DPF – catalyst based Diesel Particulate Filter DOC – Diesel Oxidation Catalyst SCR – Selective Catalytic Reduction ASC – Ammonia Slip Catalyst

Continuous Particle Number Traces – DPF Smooths and Delays Particle Transit

Post DPF PM Levels at <10mg/kWh

Particulate Mass From Partial Flow System During Transient Operation – Very Low Mass but Poor Repeatability

Comparison of average PM results using different methodologies shows <5mg/kWh in all cases

Average PM results for engine-out and tailpipe

Higher ESC results were believed to be due to mode 10 desorbing low volatility materials.

ETC and WHTC PM emissions for engine-out and tailpipe show >99% reduction

Summarised Emissions Data

		Emissions [g/kW.h]											
Test Procedure		THC			NOx		CO		PM				
		Engine	Tail	Conv.	Engine	Tail	Conv.	Engine	Tail	Conv.	Engine	Tail	Conv
		Out	pipe	Effy.	Out	pipe	Effy.	Out	pipe	Effy.	Out	pipe	Effy.
Current I	European Te	st Cycle	S										
ETC	hot start, transient	0.43	0.16	63%	1.10	0.15	86%	8.59	0.87	90%	0.581	0.001	99.8%
ESC	Steady state	0.15	0.06	63%	1.54	0.15	90%	1.10	0.00	100%	0.151	0.009	94.3%
Worldwid	de Harmonise	ed Cycle	s										
wнтс	cold, +5 min, +hot transient	0.63	0.20	69%	1.25	0.30	76%	9.09	1.92	79%	0.72	0.002	99.7%
WHSC	Steady state	0.19	0.01	95%	1.33	0.18	87%	1.00	0.02	98%	0.128	0.001	99.3%

Background Contamination Derived From Dilution Air Led to High Apparent Emissions – Regulations Allow Background Subtraction

Partial Flow Particulate Measurements Gave Extremely Low Filter Masses From All Cycles

- Partial flow PM measurements from mini dilution tunnel (MDLT) show very low levels of mass
 - Maximum total mass collected on filter was only 41µg (ESC)
 - Other cycles' results typically 10 to 20µg, similar to background levels
 - Typical <u>uncorrected</u> specific emissions from ETC/WHTC/ JE05 cycles ~ 1 to 2mg/kWh.
- ESC results were higher, believed to be due to mode 10

desorbing low volatility materials that are captured by the filter

- Particle number counting was used to verify MDLT operation.
- Subtraction of background reduces all masses to zero.

Filtration efficiency for elemental carbon >99% for all emissions cycles

- Particulate filter efficiency for removal of elemental carbon is > 99%
- Efficiencies for particle numbers and elemental carbon are very similar

Overview

- The PMP particle number method proved very repeatable even at nearambient particle emissions levels.
- Engine-out particle number data was in the range of 2.5 to 5 x 10¹⁴/kWh.
- All transient cycles data showed tailpipe particle number emissions below 10¹²/kWh.
- Particle numbers were essentially cycle-independent.
- Background-corrected PM from PMP method gave results below 5mg/ kWh.
- PM measurements from MDLT show very low mass levels
 - Maximum 41µg total mass on filter (ESC).
- Typical uncorrected emissions from ETC and WHTC: ~ 1 to 2 mg/kWh Background contamination problem encountered on both full flow methods but
 - Masses indistinguishable from background levels from all tests.
- Subtraction of background reduces all masses to zero.
- Filtration efficiencies for PM, Particle number and Elemental Carbon were all in excess of 99%

Delivering Value Through Innovation & Technology

