A New Exposure System to Evaluate the Toxicity of Scooter Emission in Lung Cells *In Vitro*

Loretta L. Müller¹, Barbara Rothen-Rutishauser¹, Pierre Comte², Jan Czerwinski², Markus Kasper³, Andreas C.R. Mayer⁴, Jean-Paul Morin⁵, Peter Gehr¹

³ Matter Engineering AG, Nanoparticle Measurement, Wohlen, Switzerland

⁴ Technik Thermische Maschinen (TTM), Zurich, Switzerland

⁵ INSERM, Université de Rouen, France

It is known that diesel exhaust particles (DEP) have the potential to induce adverse health effects associated with pulmonary and cardiovascular diseases (Brunekreef et

al, 2002) by inducing oxidative stress (Xiao et al, 2003), inflammatory reactions (Becker et al, 2005), and there is a link between exposure to diesel soot and lung cancer (Donaldson et al, 2005). The toxicity of DEP was studied by using an epithelial airway model (Rothen-Rutishauser et al, 2005). We have shown that DEP in suspension resulted in an increase of both of reactive oxygen pro-inflammatory species and of the chemokine, the tumor-necrosis factor alpha (TNFa, figure 1).

The number of registered scooters in Switzerland and in other countries is increasing every year. In some countries

Figure 1. Increased TNFα concentration in co-cultures after DEP exposition in suspension.

scooters are already the main mean of transport in cities. Because of their simple technology they produce an exhaust with a lot of fine and ultrafine particles which have a potential to cause adverse health effects (Peters et al, 1997).

For a realistic exposure of cell cultures, a box was developed in which these cultures can be exposed at air-liquid interface directly to exhaust emissions of scooters. The exhaust is discharged and directed to a mass regulator, where it is diluted 1:100 with absolute clean air. Before passing the cell cultures in a round exposure chamber which was developed especially for exhaust exposure (Morin et al, 1999; Papaioannou et al. 2006), the diluted exhaust emission is heated to 37°C, enriched with CO₂ to an end concentration of 5% CO₂ and humidified to a relative humidity of 80%. Directly before the entering to the exposure chamber control measurements (CO and CO₂ concentration, temperature, pressure, relative humidity) are conducted. On the top of the round exposure chamber, which is located in the isolated and heated box (37°C), the scooter exhaust enters with a flow of 2 l/min and is spread evenly over the four exposed 6-well plates. The air is sucked at the bottom of the exposure chamber and again CO_2 concentration, temperature, pressure and relative humidity are measured. Parallel to the exhaust exposure experiments control experiments are conducted in a reference exposure chamber, where cell cultures are exposed to absolute clean air enriched with CO₂, humidified and heated. The conditions in the exposure chamber during the exposure are stable with 80-85% of humidity, 36.5-37.5°C and about 5% CO₂.

Parallel to the exposure of the cells, the exhaust is analyzed by measuring the elementar carbon mass with a photoelectric aerosol sensor (PAS), the total particles

¹ Institute of Anatomy, University of Bern, Switzerland

² AFHB, University of Applied Sciences, Biel-Bienne, Switzerland

surface with a diffusion charging particle sensor (DC), the number of particles and the distribution of particles between 10-400nm with an electrostatic classifier with differential mobility analyser (DMA) in combination with a condensation particle counter. First measures and calculation showed that about 20% of the total particle number passing the exposure chamber stay in the chamber.

We exposed monocultures of 16HBE human bronchial epithelial cells and triple cell co-cultures (monolayer of 16HBE epithelial cells with dendritic cells and macrophages (Rothen-Rutishauser et al, 2005)) to a Peugeot two stroke direct injection scooter. We investigated two different cases: best case (oxi cat and wire-mesh filter catalyst, best lube oil with a ratio of 50% and Aspen fuel) and worst case (dummy muffler, worst oil with a ratio of 100%, unleaded fuel). After a warm-up phase of 90 minutes for the exposure system and 45 minutes for the scooter the cells were exposed during 2 hours with a dilution of 1:100 and a flow of 2 litres/min. After the exposure we incubated the cell cultures for 4h in a CO_2 incubator before we removed the medium and fixed the cells for toxicity analysis.

Two independent preliminary experiments give the following results:

- The LDH cytotoxicity test show higher cytotoxicity in triple cell co-cultures than in monocultures. The tendency of higher cytotoxicity in best case conditions than in worst case condition is too small to make a conclusion.
- We see a tendency for more oxidative damage in the DNA of mono-cultures than of triple cell co-cultures and a tendency for more oxidative damage in worst case conditions than in best case conditions (results of only one experiment).
- The evaluation of inflammation markers shows higher TNFα concentrations in cocultures than in mono-cultures and more TNFα in worst case than in best case conditions. The IL-8 concentrations are higher in co-cultures than in monocultures and the IL-8 levels of co-cultures are higher for best case than for worst case conditions.

We can summary that mostly the co-cultures show higher reactions than monocultures. The only exception is oxidative damage. The results concerning the two cases are contrary: some parameters are higher in best case conditions (IL-8) and some in worst case conditions (oxidative damage, TNF α). The reasons therefore have still to be found. One possible reason could be the amount of ultrafine particles (diameter < 100nm) in the exhaust, as we have more ultrafine particles in best case

Figure 2. Fractions of particle numbers during exposure.

conditions than in worst case conditions (Figure 2). This factor we have to study further.

To complete this study and to finish the evaluation of the exposure system we need to do a third repetition of the experiments, we need to check the particle number in the reference chamber and we have to test other scooter types and other improvements. Becker, S. et al (2005). Toxicol Appl Pharmacol.

Brunekreef, B. et al (2002). Lancet.

Donaldson, K. et al (2005). Part Fibre Toxicol.

Morin, J. P. et al (1999). Cell Biol. Toxicol.

Papaioannou, E. et al (2006). SAE International.

Peters, A. et al (1997). Am.J.Respir.Crit Care Med.

Rothen-Rutishauser, B. M. et al (2005). Am J Respir Cell Mol Biol.

Xiao, G. G. et al (2003). J Biol Chem.

> 12th ETH-Conference on Combustion Generated Nanoparticles – ETH Zurich, 24th June 2008

A System to Evaluate the Toxicity of Scooter Emission in Lung Cells In vitro

Loretta L. Müller University of Bern, Institute of Anatomy, Division of Histology

Introduction: why scooter emissions?

Scooter Avalanche in Taipeh

Overview of the Exposure System

Scooter and first dilution step

constant velocity of 40km/h

Measuring instruments for particles

> elementar carbon mass> total particle surface

photoelectric aerosol sensor (PAS) and diffusion charging (DC) particle sensor

rotation diluter: 2nd dilution

distribution of particles between 10-400nm 5

UNIVERSITÄ Bern

Flow control

rotameters for flow control and admixing of CO₂

vacuum pump for driving the circulation

Heated box with air processing and control measurements

Exposure chamber (from A.Konstandopoulos, J.P. Morin)

Control measurements

Recording of conditions (T, p, rH, CO₂, CO) during the whole exposure

Here: Peugeot TSDI, best case, exposition of 2h, 08.05.2008

Conclusion I: exposure system

- Well working exposure system
- Stable conditions:
 - 80-85% relative humidity
 - 36.5-37.5°C
 - ~ 5% CO₂
- About 20% of the particles stay in the exposure chamber

Introduction: structure of the lung

Cell types:

- Monocultures of 16HBE human bronchial epithelial cells
- <u>Co-cultures</u> of epithelial cells, macrophages and dendritic cells

Rothen-Rutishauser *et al*.₁ Am J Respir Cell Mol Biol. 2005

First Results: exposure conditions

Exposure conditions:

- Warming up: exposure system (90min.) and scooter (45min.)
- Exposure for 2h with 1:100 dilution and a flow of 2 litres/min.
- Incubation of 4h after exposure

Scooter:

- Peugeot TSDI (two stroke direct injection)
- Best case: oxi cat + WFC; best lube oil, 50% ratio, Aspen fuel
- Worst case: dummy muffler; worst oil, 100% ratio, unleaded fuel

UNIVERSITÄ Bern

First Results: cytotoxicity

 More cytotoxicity in co-cultures than in mono-cultures

First Results: oxidative damage

First Results: oxidative damage

- Tendency for more oxidative damage in mono-cultures than in co-cultures
- Tendency for more oxidative damage in worst case than in best case

First Results: inflammation

TNFa concentrations

- Higher TNFa concentrations in co-cultures than in mono-cultures
- Higher TNFa concentrations in worst case than in best case

First Results: inflammation

IL-8 concentration 30 N=2 25 L-8 concentration (ng/ml) 20 15 10 5 n 16HBE 16HBE co-16HBE 16HBE comono-culture mono-culture culture culture Best Case Worst Case

Higher IL-8 concentrations in co-cultures than in mono-cultures

lacksquare

 In co-cultures: higher concentrations for best case than worst case

UNIVERSIT*i* Bern

Conclusion II: toxicology

 Higher reactions in co-cultures than in mono-cultures (not in oxidative damage experiments)

Contrary results concerning the two cases:

	Best case	Worst case
Cytotoxicity	+	+
Oxidative damage		+
TNFa		+
IL-8	+	

First Results: particle number

IIVERSITÄT RN

Outlook

- 3rd repetition of experiments
- Measurement of particle number in reference chamber
- Checking the effects of number of ultrafine particles in best and worst case
- Test other scooter types and other improvements

Special thank to...

- ... to the whole histology team of the University of Bern, specially **B.Rothen-Rutishauser**
- ... to **Ch.Lehmann** for the excellent technical support
- ... to **P.Comte, J.Czerwinski** & Co. for excellent cooperation (Laboratory of IC-Engines and Exhaust Gas Control in Nidau)

. . . .

Bern University of Applied Sciences

- Engineering and Information Technology
- ... to **A.Mayer** (TTM) for leading this project
- ... to **J.P.Morin** (INSERM/CERTAM, Rouen) for the good cooperation
- ... to all industrial partners of the project
- ... to **Bundesamt für Umwelt** (BAFU) for financial support
- ... to every body I forgot