

Materials Science & Technology

Penetration of nano-sized metallic fuel additives from diesel vehicles

A. Ulrich, A. Wichser, N.V. Heeb,

T. Mosimann, M. Kasper,

J. Czerwinski,

A. Mayer

Principle of a Particle Filter Systems (DPF)

Effective reduction of particulates with DPF

Filtration effectivity >99 %

High potential of diesel particle filters Euro 3 + DPF versus Euro 4 and Euro 5

Poster 38

A.Mayer *et al.*, Nanopartikel-Emissionen von HDV Euro 4 und Euro 5 Dieselmotoren im Vergleich zu Euro 3 mit/ohne Partikelfilter, 4.FAD-Konferenz "Herausforderung Abgasnachhandlung für Dieselmotoren" Dresden 9.11.2006

Alptransit NEAT tunnel (57 km) - the longest rail way tunnel of the world

Soot Reduction at tunnel construction sites due to diesel particle filters (DPF) SUVA 2004

Overview DPF Systems

with Online Regeneration

	NO _x	PM
Continuous	SCR selective catalytic reduction	CRT [®] Continuously regeneration trap
Discontinuous	NCA NO _x catalytic adsorption	DPF FBC-DPF: diesel particle filter with fuel borne catalyst CSF-DPF: with catalytic coating

Soot combustion dependent on temperature

_ _

8

Particle Filter System Concepts Metal catalyzed combustion of collected soot

Fuel borne catalyst

Catalytic coating

Particle Filter System Concepts

Metal catalyzed combustion of collected soot

- Addition of metal catalyst to fuel
 => dosing concept / optimization
- Catalyst in soot
 => catalyst in center of particulates
 => higher efficiency of regeneration
- Shorter regeneration time
 4 min for 30g of soot (*G. Belot 2003*)
 - Always fresh catalyst
 - Hazard of penetration additive metals, nanoparticles => Increase during regeneration? DPF aging (cracks, ...)?
 - Hazard of precipitation / deposit (homogeneous mixture / mass balance)

Catalytic coating

- No additional metal in fuel
- Surface catalyst in coating
 => direct contact necessary
 => risk of incomplete regeneration
- Longer regeneration time
 20 min for 30g of soot (*G. Belot 2003*)
- Possible aging of the catalyst
- Hazard of abrasion lower than penetration (new DPF) => aging?
- Hazard of accumulation => release; poisoning e.g. sulphur at Pt surfaces

Precipitation of a Fuel Additive

1.1

Example for a Mass balance for Cerium -Total mass per cycle

	Cerium
Additive quantity	473 mg
Total mass ELPI without trap	2.05 μg
Total mass ELPI with trap	<u>0.037 μg</u>
Total mass exhaust gas with trap	15.37 mg
Total mass exhaust gas with trap	0.27 mg
Deposition in engine, tank, etc.	457 mg
Deposition in trap	15.1 mg
Ermitted into ambient	0.27 mg
Filtration rate in engine	96.7 %
Filtration rate in trap	98.2 %
Total filtration rate system	99.94 %
Emissions factor	0.96 µg/kWh
	0.2 μg/Nm ³

EMPA

A. Ulrich et al., Anal. Bioanal. Chem. 2003

Release of stored sulphur

from Pt coated DPF at T > 400 $^{\circ}$ C

=> long term operation at low load conditions (VERT 2000 h operation test, S < 50 ppm)

=> PM filtration rate: particle No. >98 %, but bad particle mass

=> Release time > 30 min

Sample ID	Set point	n / M	Δm	t ₅	t ₆	Amout of water loss	CI	NO2	NO3	PO4	SO4
		[min ⁻¹ /Nm]	[mg]	[°C]	[°C]		mg/filter				
LOD							0.03	0.03	0.03	0.03	0.03
V21	2	1400/605	32.1	491	417	11.2	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>6.0</td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td>6.0</td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>6.0</td></dl<></td></dl<>	<dl< td=""><td>6.0</td></dl<>	6.0
V22	2	1400/605	30.3	491	417	10.1	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>5.2</td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td>5.2</td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>5.2</td></dl<></td></dl<>	<dl< td=""><td>5.2</td></dl<>	5.2
V23	6	1400/297	0.2	321	289	0	0.03	<dl< td=""><td>0.08</td><td><dl< td=""><td>0.03</td></dl<></td></dl<>	0.08	<dl< td=""><td>0.03</td></dl<>	0.03
V24	6	1400/297	0.4	321	289	0	0.03	<dl< td=""><td>0.05</td><td><dl< td=""><td>0.2</td></dl<></td></dl<>	0.05	<dl< td=""><td>0.2</td></dl<>	0.2
V25	5	2000/252	0.2	334	309	0	0.05	<dl< td=""><td>0.11</td><td><dl< td=""><td>0.05</td></dl<></td></dl<>	0.11	<dl< td=""><td>0.05</td></dl<>	0.05
V26	5	2000/252	0.4	334	309	0	<dl< td=""><td><dl< td=""><td>0.03</td><td><dl< td=""><td>0.25</td></dl<></td></dl<></td></dl<>	<dl< td=""><td>0.03</td><td><dl< td=""><td>0.25</td></dl<></td></dl<>	0.03	<dl< td=""><td>0.25</td></dl<>	0.25
V28	1	2000/530	5.4	481	430	0.8	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>1.9</td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td>1.9</td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>1.9</td></dl<></td></dl<>	<dl< td=""><td>1.9</td></dl<>	1.9
V29	1	2000/530	6.1	481	430	0.9	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>2.2</td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td>2.2</td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>2.2</td></dl<></td></dl<>	<dl< td=""><td>2.2</td></dl<>	2.2
V27	2 (Rep)	1400/600	19.9	501	418	5.9	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>4.9</td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td>4.9</td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>4.9</td></dl<></td></dl<>	<dl< td=""><td>4.9</td></dl<>	4.9
V30	2 (Rep)	1400/600	18.4	501	418	5.3	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>4.1</td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td>4.1</td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>4.1</td></dl<></td></dl<>	<dl< td=""><td>4.1</td></dl<>	4.1

Condensation

Sulphur Artefacts

A. Ulrich *et al.*, 11. ETH Conference on Combustion Generated Nanoparticles 2007 A. Mayer, A. Ulrich *et al.*, SAE 2008-01-0332

Release time for stored SOx artefacts Results for DPF 7

A. Mayer, A. Ulrich et al., SAE 2008-01-0332

Materials Science & Technolog

Release of stored sulphur from Pt coated DPF at high Temperature long term accumulation at low load condiitons

A. Ulrich *et al.*, 11. ETH Conference on Combustion Generated Nanoparticles 2007 A. Mayer, A. Ulrich *et al.*, SAE 2008-01-0332

15

Particle Filter System Concepts

Metal catalyzed combustion of collected soot

- Addition of metal catalyst to fuel
 => dosing concept / optimization
- Catalyst in soot
 => catalyst in center of particulates
 => higher efficiency of regeneration
- Shorter regeneration time
 4 min for 30g of soot (*G. Belot 2003*)
 - Always fresh catalyst
 - Hazard of penetration additive metals, nanoparticles => Increase during regeneration? DPF aging (cracks, ...)?
 - Hazard of precipitation / deposit (homogeneous mixture / mass balance)

Catalytic coating

- No additional metal in fuel
- Surface catalyst in coating
 => direct contact necessary
 => risk of incomplete regeneration
- Longer regeneration time
 20 min for 30g of soot (*G. Belot 2003*)
- Possible aging of the catalyst
 - Hazard of abrasion lower than penetration (new DPF) => aging?
- Hazard of accumulation => release; poisoning e.g. sulphur at Pt surfaces

ISO 8178/4 C1-cycle for construction site engines

Empa, 12th Conference on Combustion Generated Nanoparticles 2008

VERT Sampling Procedures

Swiss National Standard

SNR 277205

Principle of Electrical Low Pressure Impactor

Specification of ELPI impactor

Stage	Dso%	Di	Number min	Mass min	Mass max
	[µm]	[µm]	[1/cm3]	[µg/m3]	[mg/m3]
13	10				
12	6.8	8.4	8.00E+03	22	2100
11	4.4	5.3	2.00E+04	12	1200
10	2.5	3.2	4.00E+04	6.3	630
9	1.6	2	8.00E+04	3.5	350
8	1	1.3	2.00E+05	2	200
7	0.65	0.81	3.00E+05	1	90
6	0.4	0.51	5.00E+05	0.4	40
5	0.26	0.33	9.00E+05	0.17	17
4	0.17	0.21	2.00E+06	0.078	7.8
3	0.108	0.15	3.00E+06	0.035	3.5
2	0.06	0.081	5.00E+06	0.015	1.5
1	0.03	0.042	9.00E+06	0.005	0.5

Analysis Filter Samples

eg. ELPI Filter

Sample Digestion Using Microwave

Characteristics of Plasma Mass Spectrometry ICP-MS

- Fast mulitelement technique 75 elements in 2 min.
- High sensitivity ppb to ppt levels (µg/L ng/L)
- Large dynamic working range
- Fast scan => transient signals
- Resolution
 quadrupol-ICP-MS ~ 0.7 amu
 high resolution ICP-MS ~ 0.001 amu

Comparison of sensitivity and dynamic working range for different analytical techniques

Types of fuel additives (FBC)

Nanoparticulate (additive fuel suspension) versus organo-metallic additives (additive fuel mixture)

Effect of a metal additive on soot combustion

---- dotted lines w/o additive¹ / --- solid line with Ce additive¹ / --- Pt coating²

²K. Ogyu et al., 2006-01-1526

Standard Diesel

100 kW TDI Diesel Engine, 1400 rpm / 50 %Torque, SMPS

27

Standard Diesel + 5 ppm Ceria Regeneration Additive 100 kW TDI Diesel Engine, 1400 rpm / 50 %Torque, SMPS

28

Empa, 12th Conference on Combustion Generated Nanoparticles 2008

Standard Diesel + 10 ppm Ceria Regeneration Additive 100 kW TDI Diesel Engine, 1400 rpm / 50 %Torque, SMPS

29

Standard Diesel + 20 ppm Ceria Regeneration Additive 100 kW TDI Diesel Engine, 1400 rpm / 50 %Torque, SMPS

Standard Diesel + 35 ppm Ceria Regeneration Additive 100 kW TDI Diesel Engine, 1400 rpm / 50 %Torque, SMPS

Standard Diesel + 35 ppm Ceria Regeneration Additive 100 kW TDI Diesel Engine, 1400 rpm / 50 %Torque, SMPS

5 ppm Fe + 31ppm C8 amine // 5 ppm Fe + 5 ppm Cu regeneration additives

iron/amine and iron/copper regeneration additive

Fe/amine additive

 $\overline{}$

Filtration effectivity >99 %

Fe/Cu additive

Fe/Cu additive

Potential of DPF to reduce toxic components e.g. PAHs / Toxicity Talk N.V. Heeb

D. Wenger *et al.*, Environ. Sci. Technol. 42(10), 2008; 2992-2998.

Metall emissions determined by XRF

Oxidation catalyst (OC) versus DPF with OC

M. Gautam et al. Chemical characterization of PM emissions from a catalyzed trap equipped natural gas fueled transit bus, ETH Conference on Combustion Generated Nanoparticles 2007

Effect of metallic fuel additives on formation of secondary emissions e.g. Dioxin with Cu

N.V. Heeb, Environ. Sci. Technol.; 2007; 41(16); 5789-5794. N.V. Heeb et al., ETH Conference on Combustion Generated Nanoparticles 2007

Is there a difference in penetration of FBC during regeneration phase compared to loading phase?

Relative enhancement of emissions during DPF regeneration phase for a Fe/Cu additive

Loading versus Regeneration phase

Ceria Regeneration Additive – Possible Penetration of the Additive Metal Ce

Loading versus Regeneration

Ceria Regeneration Additive – Possible Release of Stored Metals e.g. Zn

Loading versus Regeneration

Ceria Regeneration Additive – Possible Release of Stored Metals e.g. Ca

Advantages and Disadvantages of DPF

- High filtration efficiency for particle (> 99 % can be achieved)
- Reduction of toxic and carcinogenic components e.g. PAHs, metals
- Hazard of formation of secondary emission
 Cu (e.g. FBC) supports Dioxin formation, Pt coating tends to sulphur accumulation
- Possible deposition of FBC in the engine (precipitation)
- Fuel additive can change size distribution of emission
- Enhanced penetration of FBC during regeneration phase depending on the loading status of the DPF (penetration of catalytic metal additive and release of stored metals)
- Contribution of penetration during regeneration is low when short regeneration time is taken into account (if DPF ageing effects further increase needs to be checked)

Outlook – Further Investigations

- Localization of additive deposition (engine, exhaust pipe, CVS)
- Does an "initial deposition phenomenon exists? (later release?)
- Long-term stability of additive fuel mixtures (Influence of additive and fuel composition, homogeneity of mixture, temperature stability)
- Influence of lubricants
- Further investigations on the DPF operation conditions loading and regeneration phases (fuel additives, coating)
- Retaining of metals in the DPF (possible release during regeneration?)
- Storage and release effects (e.g. sulphur)
- Long-term behaviour of DPF on penetration or abrasion (aging)
- Comparison of different concepts (DPF + FBC; coated DPF)

Acknowledgements

- Z. Stepien and S. Oleksiak (Additives)
 Institute of Petroleum Processing, Cracow/Poland
- J. Czerwinski, P. Comte, J.L. Petermann, T. Neubert (Test stand) University of Applied Science Biel
- T. Mosimann, A. Hess, M. Kasper (ELPI, SMPS) Matter Engineering
- A. Wichser, U. Gfeller, N.V. Heeb, P. Schmid (Analysis) Empa
- **A. Mayer** (Coordination)
- **BAFU, SUVA, Industry Partners** (Finance)

