

The Regulated And Unregulated Exhaust Emissions Performance

Of 5 Modern Motorcycles Over Euro 3 & WMTC Test Cycles

A joint Ricardo/AECC Programme of Work

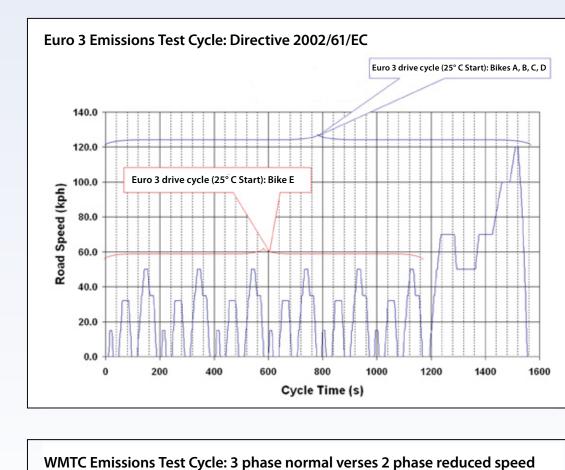
Objectives

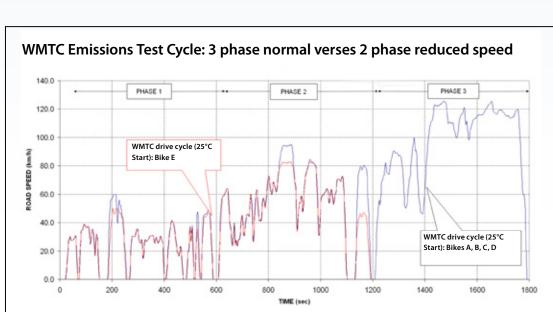
- To select four Euro 3 and 1 Indian specification motorcycles, of varying technologies, fitted with catalyst-based emissions control systems
- To test each machine over Euro 3 and WMTC cycles and provide regulated emissions data
- To evaluate the PMP mass and number measurement protocols for use with motorcycles and determine typical particle number and mass emissions from the cycles studied

Experimental Facility and Test Vehicles

- The Ricardo motorcycle emissions test facility
- approved for both European and US certification testing
- Brush 120kW, 275kph motorcycle chassis dynamometer
 Road speed proportional
- vehicle cooling fan
- Raw and dilute exhaust emissions measurement
- capabilities

 Controllable cell temperatur
- Controllable cell temperatures15 channel logging device

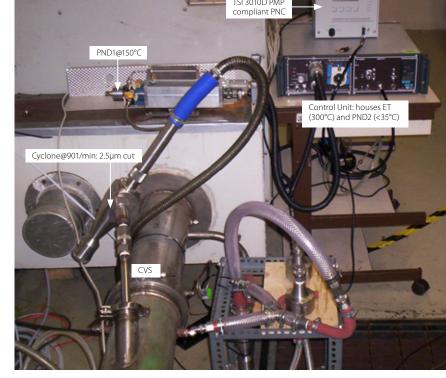

Bike	Engine	EFI	Open/Closed Loop Control		Catalyst	Spec
Α	800cc V4	Υ	Closed	Υ	Υ	Euro 3
В	800cc in line 2-cyl.	Υ	Closed	N	Υ	Euro 3
С	1300cc in line 4-cyl.	Υ	Closed	Υ	Y	Euro 3
D	500cc 1-cyl.	Υ	Closed	Υ	Υ	Euro 3
E	149cc 1-cyl.	N	N/A	Υ	Υ	Indian Spec.


EFI = Electronic Fuel Injection SAI= Secondary Air Injection

Drive Cycles and Test Protocol

Test Protocol

- All motorcycles were preconditioned to the Euro 3 test cycle to allow any ECU adaptations to occur.
- Test conducted with a cold start, machines 'soaked' over night under test conditions as per regulations
- PM Filters preconditioned on the day prior to testing. Weighed on test day.
- All 3 tests conducted using TX40 filter papers for particulate mass measurement. 1 extra test conducted on glass fibre filter for chemical analysis of soot, anions and HCs
- All test fuel taken from a single batch of pump grade 95RON Unleaded.
 Continuous and bag data recorded.



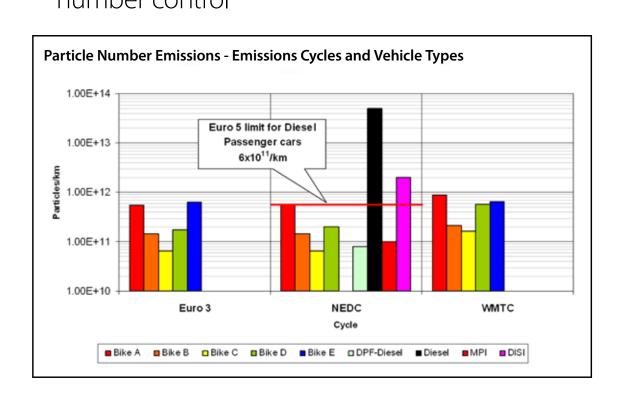
PN and PM sampling

Particulate Mass

- Currently no approach in regulations for particulate emissions from spark-ignited vehicles
- New approach proposed for emissions from Euro 5 GDI
- vehicles
 Same approach as used for DPF equipped Diesels and developed in the PMP

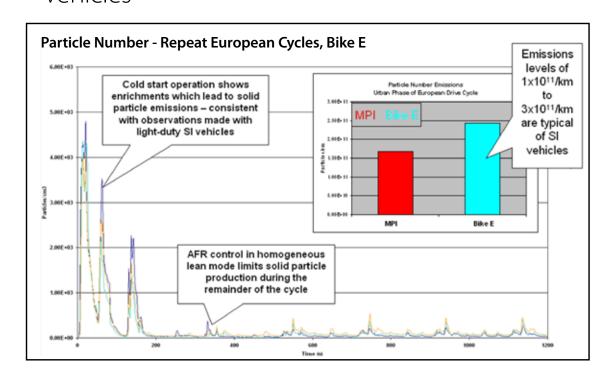
In this programme an approach
 broadly similar to the PMP Euro 5 method was employed
 Latest methodology for low emissions engines and vehicles

Particle Number


- Particle numbers sampled from CVS as in light-duty and heavy-duty
- PMP procedures
 Measurement equipment the same as used in AECC Euro VI
- programme
- Dilution factors of 150 to 180

- Sufficient to keep emissions from all bikes below 10,000/cm³

- Cycle average data at ~ 200/cm³
 Performed according to latest draft of R83 except
- Performed according to latest draft of R83 except
 CVS dilution tunnel does not have HEPA filter
 - Coarse filter is in place
 - Background level elevated
 - Typical background levels 10 –20 /cm³
 Light-duty levels <2/cm³
- CVS and transfer tube purged of particles and low volatility HC, by high temperature operation (150kph) of lambda1 motorcycle, prior to


PN in Context

- All bikes show NEDC emissions levels of <6x10¹¹/km
- WMTC emissions did not exceed 10¹² from any bike
- Motorcycles unlikely to be seen as imminent targets for particle number control

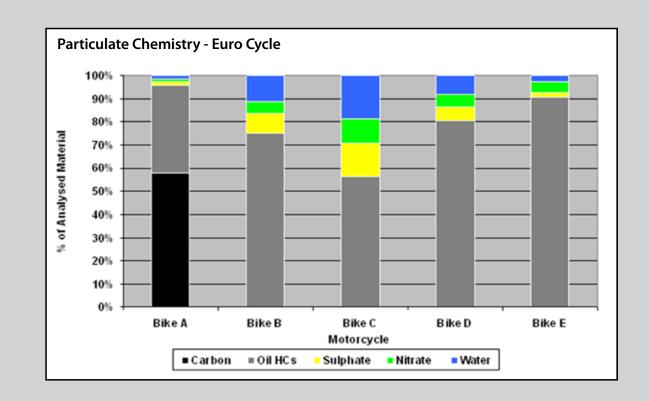
Euro 3 Cycle - Engine effects on Particle Emissions

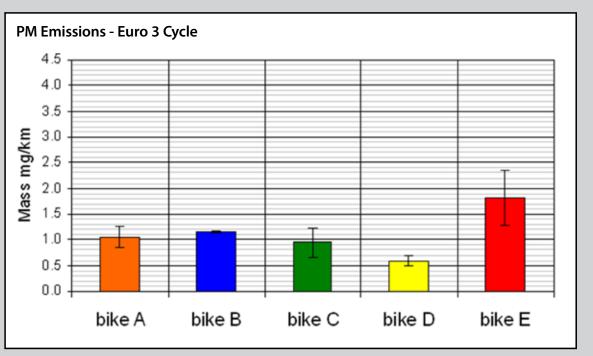
Lean operation gives particle numbers similar to stoichiometric SI vehicles

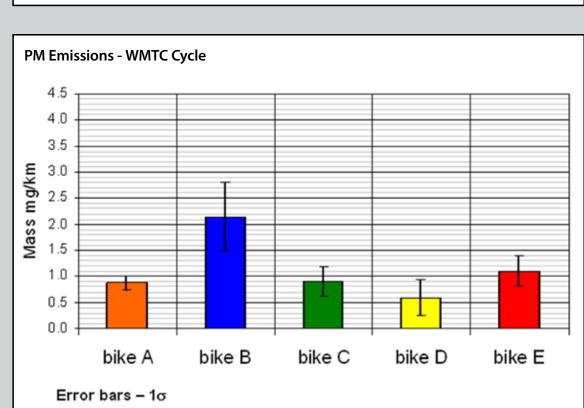
Particle Numbers Many Times Higher When Running Rich

- Bike A tests in rich and lambda 1 modes
- Particle number emissions from rich tests >10¹²/km
 Lambda 1 tests ~5 x 10¹¹/km
- Rich operation substantially increases particle numbers

 Bike A Rich Operation

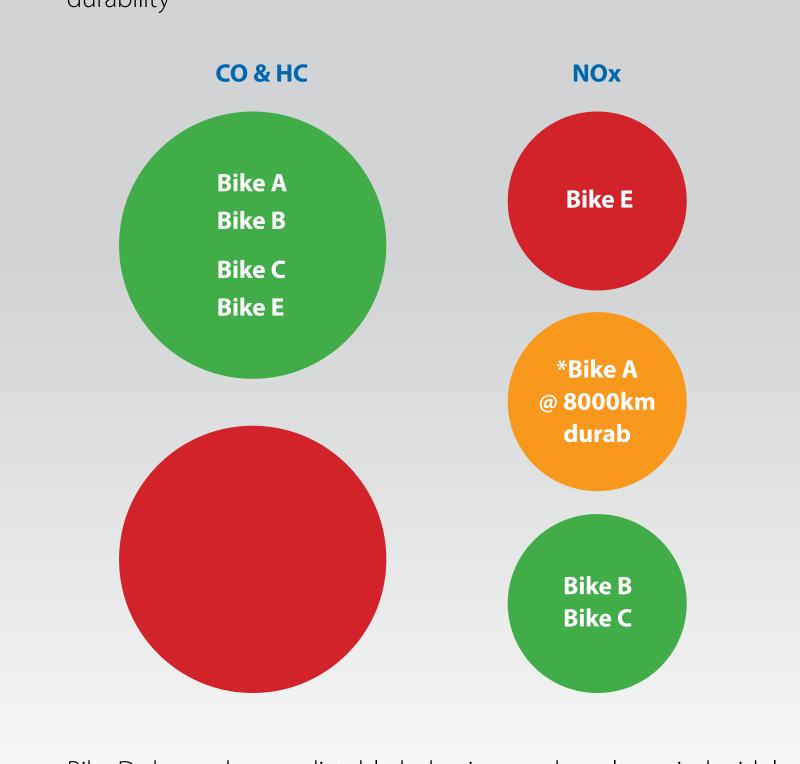

 Bike A Lambda 1 Operation


 10000


 5000

PM Results And PM Chemistry

- Generally similar mass levels from all motorcycles on both WMTC and Euro 3 cycles
- Mass emissions always <2.5mg/km
- Emissions levels below 4.5mg/km level required for Euro 5 (DPF
- Diesel and GDI)
- Elemental carbon present at trace levels in PM from all bikes
- (<0.6mg/km)
- Oil HCs are a major contributor (often >80%) and may contribute to particle numbers
- Trace levels of anions



PM and Particle Number Conclusions

- All lambda 1 motorcycles produced particle number emissions from Euro 3 and WMTC that were below the 6×10^{11} /km level required for light-duty Diesels at Euro 5.
- Rich operation elevated particle numbers to >10¹²/km, similar to levels seen from lean-burn DI gasoline vehicles
- Particulate mass emissions were typically 2mg/km or less, well inside the 4.5mg/km limits required for Diesel vehicles at Euro 5

Regulated Emissions Conclusions

 Compliance with limits on Euro 3 and WMTC Cycles after 1000 km durability

- Bike D showed unpredictable behaviour and results varied widely from test-to-test from this motorcycle
- from test-to-test from this motorcycle