13th ETH Conference on Combustion Generated Nanoparticles June 22-24, 2009 Zurich, Switzerland

Regeneration, volatile nanoparticles, toxicity and other research questions for diesel emission controls

> Alberto Ayala* Mechanical and Aerospace Engineering West Virginia University

Shaohua Hu, Harry Dwyer, John Collins, Tao Huai, and Jorn Herner *Research Division California Air Resources Board

Clean Vehicle/Engine Programs in California

- CARB has rules in place to reduce emissions from every existing diesel engine: retrofit, repower, replace
- New low carbon fuel standard: biodiesel, renewable diesel
- President Obama adopts new national policy on GHG emission reductions for new cars and trucks based on California's program (Pavley GHG limits)
- US stimulus funding under Diesel Emission Reduction Act
- Zero Emission Vehicle (ZEV) Program
- New limits under Low Vehicle Emissions Program (LEVIII)
 - Criteria emissions (gaseous and PM)
 - Contemplating particle number for diesel and GDI
- Nexus between air quality and climate change
 - Control GHG and criteria emissions (i.e., Pavley + LEVIII)
 - Black carbon and other climate forcers

*Towards HDDE 0.2 g/bhp-hr NO_X

- DPF + urea-SCR technology on track for 2010
 - This approach is large departure from conventional technology
 - Potential for new compounds to form highlights need for research
- Several options for SCR catalyst on the table:
 - Vanadium, Fe & Cu zeolites
- "New" substances may require new methods

* With input from Dr. J. DeVita/CARB

VEHICLE EMISSIONS LABORATORIES

DPF + urea-SCR prototype retrofit

1998 Cummins, 11L, 360K miles

90+% PM and 75+% NOx reductions by DPF + urea-SCR Retrofits

Ammonium sulfate dominates composition of particle emissions from catalyzed HD retrofits

Exhaust temperature promotes substantial formation of nanoparticles for well-broken-in catalytic devices

HDDV nanoparticles are strongly correlated (r²=0.70) with sulfate. Larger particles are not.

Sulfate as a function of particle numbers

OXIDATIVE STRESS POTENTIAL OF TOTAL PM PER DISTANCE DRIVEN IS REDUCED BY ALL HD RETROFITS

Golden Vehicle* DPF Regeneration: During Constant Speed Test

Particle size and concentration distributions during DPF regeneration Note: Nanoparticle formation!!!

*Also see 11th ETH pres in 2007

Gaseous emissions

Particle number emissions

Golden Vehicle DPF Regeneration (cont')

Particle emissions in three consecutive partial DPF regenerations during three NEDC cycles

Gaseous and PM Emissions:

- Particle emissions increase sharply during DPF regeneration
- The PMP systems detected a moderate increase in particle numbers
- Grimm CPC measured higher particle numbers than PMP CPCs
- Those particles could be either volatiles that survived the VPR, or
- Sub-20 nm solid particles emitted during DPF regeneration

Comparison of particle number emissions during regeneration (NEDC B & C)

- Ref. CPC only shows a small increase in particles relative to cold start
- Particle number does not reflect the PM increase measured by filters

Emissions of Greenhouse Gases and Black Carbon

- Black carbon reduced by DPF
- N₂O increase by prototype SCR retrofit
- Net greenhouse gas emission impact is minor by DPF+SCR retrofits

ACKNOWLEDGEMENTS

CARB Investigators

- **Research** Division
- Monitoring and Laboratory Division
- Mobile Source Control Division

THE UNIVERSITY WISCONSIN MADISON

UCDAVIS UNIVERSITY OF CALIFORNIA

Co-Sponsors

California Energy Commission

<section-header>In-kind ContributorsEU-DG-JRCHoriba
TSIMatter Eng.Image: State State