Potassium in flame-made Pt/K/Al₂O₃ NO_x storagereduction catalysts

Robert Büchel^{a,b}, Reto Strobel^{a1}, Alfons Baiker^b and Sotiris E. Pratsinis^a

^aParticle Technology Laboratory, ^bInstitute for Chemical and Bioengineering ETH Zurich, Sonneggstrasse 3, CH-8092 Zürich Switzerland.

Abstract

High surface area Pt/K/Al₂O₃ catalysts were prepared with a 2-nozzle flame spray method resulting in Pt clusters on γ -Al₂O₃ and amorphous K storage material as evidenced by Raman spectroscopy. The powders had a high NO_x storage capacity and were regenerated fast in a model exhaust gas environment. From 300 to 400 °C no excess NO_x was detected in the off gas during transition form fuel lean to fuel rich conditions, resulting in a highly effective NO_x removal performance. Above 500 °C, the NSR activity was lost and not recovered at lower temperatures as K-compounds were partially crystallized on the catalyst.

1. Introduction

Stricter limits for exhaust emission motivate the development of new catalysts especially for NO_x removal under oxygen rich conditions as encountered in lean burn and direct injection engines. NO_x storage-reduction (NSR) catalysts [1] can trap exhaust NO_x under fuel lean conditions on an alkali or alkaline-earth metal in the form of metal-nitrates. The alkalinity determines the NO_x trap performance in the order: $K > Ba > Sr \ge Na > Ca > Li$ [2]. Regeneration of the NO_x trap occurs under fuel rich conditions where metal-nitrates are decomposed and the released NO_x is reduced to nitrogen [3]. Potassium- and barium-containing compounds have been studied extensively for their NO_x storage capacity [4]. The best performance of K as storage

2. Experimental

The Pt/K/Al₂O₃ catalysts were prepared by the 2-nozzle FSP having an inter-nozzle distance (d) of 6 cm and an angle φ of 160° [5]. The NSR measurements were made with 20 mg of catalyst in a fixed-bed reactor (inner tube diameter of 4 mm). The NO_x and NO concentrations in the effluent gas were monitored by a chemiluminescence detector (ECO Physics, CLD 822S).

The NO_x conversion was measured at 250 – 600 °C while switching 50 times between oxidizing (3 min in 667 ppm NO and 3.3% O₂ in He) and reducing (1 min in 667 ppm NO and 1333 ppm C₃H₆ in He) atmospheres. All catalysts were pretreated in 5% flowing H₂ for 10 min at the same temperature as the NO storage test was made. The total gas flow rate for all experiments was 60 mL/min corresponding to a space velocity of 72'000 h⁻¹.

3. Results and Discussion

3.1 Structural properties

In XRD measurement only γ -Al₂O₃ was detected [6] as the as-prepared K₂CO₃ was amorphous and the Pt concentration was below the XRD detection limit. The Al₂O₃ support was essential to produce high surface area powders (SSA =146 m²/g) because the high surface area of pure Al₂O₃ (SSA=148 m²/g) keeps the K in a highly dispersed and amorphous state. Spraying only K precursor resulted in low surface, crystalline K₂CO₃ with a measured SSA of 7 m²/g. The amorphous nature of the 2-FSP-made Pt/K/Al₂O₃ was confirmed by Raman spectroscopy.

¹ Currently with Satisloh Photonics AG, CH-8812 Horgen Switzerland

3.2 Dynamic NO storage-reduction

The NO_x conversion at different temperatures was measured for 50 fuel lean/rich cycles. The powder cycled very well at 300 °C with a NO_x conversion above 80%. At 350 °C the NO_x conversion was increased to 95% and at 400 °C almost no exhaust NO_x could be detected at any time. At 500 and 600 °C the NO_x conversion decreased for both catalysts to around 60%. This sudden drop could be attributed to partial crystallization of K₂CO₃, though no difference in XRD could be observed. After the test at 600 °C, the same catalysts was examined at 300 °C and had lost 50% of its performance compared to the corresponding fresh powder. This indicates that the initial structure of the Pt/K/Al₂O₃ was altered at 600 °C and probably crystalline K₂CO₃ was formed, similar as in the Raman investigation. Other catalysts were first cycled 50 times at 350 °C and subsequently cycled 50 times at 300 °C. The low-temperature aged catalysts showed similar, if not better, NO_x conversions compared to a fresh catalyst at 300°C. To explain aging, further investigations are needed.

4. Conclusions

Flame synthesis of Pt/K/Al₂O₃ resulted in amorphous K_2CO_3 with NO_x conversion >80% in the optimal temperature range of 300 – 400 °C. This high performance could be reached by fast NO_x uptake during the fuel lean and fast regeneration during the fuel rich phase. Additionally the typical overshooting of the NO_x signal during the switch from fuel lean to fuel rich gases was significantly decreased and never exceed the inlet NO_x concentration.

5. Acknowledgements

We thank for the financial support by ETH Zürich (TH-09 06-2) and the contribution of platinum chemicals by Johnson Matthey PLC is greatly appreciated.

6. References

- 1. N. Takahashi, H. Shinjoh, T. Iijima, T. Suzuki, K. Yamazaki, K. Yokota, H. Suzuki, N. Miyoshi, S. Matsumoto, T. Tanizawa, T. Tanaka, S. Tateishi, K. Kasahara (1996) Catal Today 27:63.
- 2. T. Kobayashi, T. Yamada, K. Kayano (1997) SAE Tech Paper 970745
- 3. A. Fritz, V. Pitchon (1997) Appl Catal B 13:1.
- 4. M. Takeuchi, S. Matsumoto (2004) Top Catal 28:151.
- 5. R. Büchel, R. Strobel, F. Krumeich, A. Baiker, S. E. Pratsinis (2008) J Catal article in press doi:10.1016/j.jcat.2008.11.016.
- 6. R. Strobel, J. D. Grunwaldt, A. Camenzind, S. E. Pratsinis, A. Baiker (2005) Catal Lett 104:9.
- 7. J. D. Frantz (1998) Chem Geol 152:211.
- 8. A. Amberntsson, H. Persson, P. Engstrom, B. Kasemo (2001) Appl Catal B 31:27.
- 9. F. Goncalves, J. L. Figueiredo (2006) Appl Catal B-Environ 62:181.
- 10. N. Takahashi, A. Suda, I. Hachisuka, M. Sugiura, H. Sobukawa, H. Shinjoh (2007) Appl Catal, B 72:187.

Potassium in flame-made Pt/K/Al₂O₃ NO_x storage-reduction catalysts

www.ptl.ethz.ch

R. Büchel^{a,b}, R. Strobel^a, A. Baiker^b, and S. E. Pratsinis^a

^aParticle Technology Laboratory, ^bInstitute for Chemical and Bioengineering , ETH Zurich, CH-8092 Zurich, Switzerland

Characterization

Objective

 $\label{eq:pt/K/Al_2O_3} \begin{array}{l} \mbox{catalyst can be used for abatement of combustion generated NO_x in lean burn engines.} \\ \mbox{Thereby effluent NO_x is stored on K under oxygen rich conditions and is later regenerated during a short fuel rich period [1].} \end{array}$

Here, catalyst powders were made using a two nozzle flame spray pyrolysis (FSP) setup. With this particle mixing as well as a preferential Pt deposition can be made by adjusting the precursor composition and geometry of the setup [2].

Simplified NSR working principle: On the left side NO_x is stored during fuel lean condition and on the right side regenerated during fuel rich conditions

Flame Synthesis

2-FSP setup to produce $Pt/K/Al_2O_3$: A liquid metal-organic precursor is dispersed and combusted. Flame made K- and Al component combine downstream.

References

W. S. Epling *et al.*, Catal. Rev.-Sci. & Eng. 46, 163-245 (2004).
R. Büchel, *et al.* J. Catal. 261, 201-207 (2009).

Acknowledgements

We would like to thank Dr. Frank Krumeich from ETH Zürich for the electron microscopy analysis and kindly acknowledge financial support by ETH Zürich (ETH Research Grant TH-09 06-2). The contribution of platinum chemicals by Johnson Matthey PLC is greatly appreciated.

STEM with EDX show well distributed Pt, K and Al in the powder.

XRD of amorphous Pt/K/Al_2O_3 compared to Pt/Al_2O_3. Al_2O_3 support is needed, otherwise crystalline, low surface area K_2CO_3 is formed.

Raman spectroscopy of amorphous K. After high laser energy exposure the powder crystallizes and typical $\rm K_2CO_3$ Raman shifts can be observed

Effect of cycling and operation temperature

Outlet NO_x concentration during the 48th cycle for different temperatures.

Comparison K and Ba

Conclusions

Flame synthesis of Pt/K/Al₂O₃ showed:

- NO_x conversion >80% at 300 400 °C
- Temperatures above 500°C alter the catalyst structure lowering the catalyst performance.
 Reduced overshooting of NO,
- This superior performance was attributed to good K distribution in the catalysts and the amorphous nature of the K species.