# Miniature diffusion size classifiers for personal monitoring and sensor networks 

M.Fierz, C. Houle, P. Steigmeier and H. Burtscher

Fachhochschule Nordwestschweiz, Windisch, Switzerland

## The diffusion size classifier (Disc) $\boldsymbol{w}$

- Particles are labelled with positive charges in a unipolar charger, so that they can later be detected by the current they induce
- Particles are deposited by diffusion in a "diffusion stage" and detected as an electrical current
$\square$ Remaining particles end up in a filter stage

- Diffusional deposition is size-selective: smaller particles are captured more efficiently
Filter stage current divided by diffusion stage current => particle size
Total current + particle size => particle number



## Disc vs DC (Diffusion Charger) ${ }^{\boldsymbol{n}} \boldsymbol{w}$



Diffusion Size Classifier
(DiSC) average particle size, particle number


## Diffusion Charger (DC)

no size/number information measures "diameter concentration" Can be interpreted as lung deposited surface area - interesting!?

## 2008 Personal Monitor Prototype (DC) $\mathbf{n} \mid \boldsymbol{w}$

- 770 grams
-9h battery life
$\square 45 \times 82 \times 180 \mathrm{~mm}$
- Data stored on SD-card

- $10 \times$ smaller and lighter than existing diffusion charging instruments
- 670 grams
- 8h battery life
- $40 \times 90 \times 180 \mathrm{~mm}$
- Data stored on SD-card
- USB connection to PC

It's DiSC instead of DC (but it could be a DC too)


- DiSC measures particle number average diameter and DC signal with a time resolution of 1 second
$\square$ Detection limits: ~10...200nm (DC: no upper limit) ~1e3...1e6 pt/ccm
- Accuracy typ. +-30\%

12 times smaller than the original DiSC


Compared to the desktop DiSC, the miniDiSC has

- a lower flow rate (1lpm) = lower signals = higher detection limits
- a weaker pump (less underpressure possible)
$\square$ finer meshes in the diffusion stage which require more frequent cleaning \& recalibration
- Less power available for heating to stabilize temperature
- We can build both a DiSC and a DC in a miniature package
Both instruments seem interesting to me
The DiSC is a "superset" of the DC you get $D C$ signal plus particle number plus average particle diameter


## Application 1: Personal exposure

Brugg - Baden - Zürich - Küsnacht 30.4.2009


## Application 2: portable "PMP" $\mathbf{n} \boldsymbol{w}$



Particle losses in ion trap:


- 6 miniDiSCs were deployed for one week in Zürich
Environmental enclosures used in exposed locations
- 220 V mains power used

External battery pack in enclosure would last approximately one week
Data recorded to SD-card


## Totally different type of data than that available today high temporal and potentially high spatial resolution



## Wireless monitoring network


http://147.86.20.28/minidisc.html (limited time only!)

- The miniDiSC is a new handheld aerosol detector
DiSC or DC?
It should useful both for exposure studies as well as for flexible measurement networks, such as transport of PM from a localized source (not for long-term-monitoring!)
It might be useful for "PMP-like" field measurements in combination with a simple thermodiluter


## Acknowledgements

## Work

Corey Houle (mechanical design) Peter Steigmeier (electronics)

Monitoring Network Example


Susanne Schlatter (UGZ) Peter Mertes (PSI)

Funding
Forschungsfonds Aargau


