The Global and Regional Climate and Air Pollution Effects of Fossil-Fuel Versus Biofuel Soot

> Mark Z. Jacobson Atmosphere/Energy Program Dept. of Civil & Environmental Engineering Stanford University

13th ETH Conference on Combustion-Generated Nanoparticles June 22-24, 2009 Zurich, Switzerland

GATOR-GCMOM Model

Gas processes Emissions Photochemistry Gas-to-particle conversion Cloud removal Aerosol processes Emissions Nucleation/condensation Gas dissolution Aqueous chemistry Crystallization Aerosol-aerosol coagulation Aerosol-cloud coagulation Dry deposition Sedimentation Rainout/washout Meteorological processes Pressure, winds, temp., TKE

Cloud processes Subgrid clouds, size-resolved physics Liquid/ice growth on aerosol particles Liquid drop freezing/breakup Hydrometeor-hydrometeor coagulation Hydrometeor-aerosol coagulation Precipitation, aer./gas rainout/washout Below-cloud evaporation/melting Lightning from collision bounceoffs Radiative transfer UV/visible/near-IR/thermal-IR Gas/aerosol/cloud scat./absorption Predicted snow, ice, water albedos Surface processes Soil, water, snow, sea ice, vegetation, road, roof temperatures/moisture Ocean 2-D dynam., 3-D diffus/chem.

Ocean-atmosphere exchange

Cloud Microphysical and Chemical Processes

Size Distributions Treated

FF Soot	Internmix	Liq.	Ice	Graupel
Number	Number	Number	Number	Number
BC	BC	BC	BC	BC
POM	POM	POM	POM	POM
SOM	SOM	SOM	SOM	SOM
H ₂ O-h	H ₂ O-h	H ₂ O-h	H ₂ O-h	H ₂ O-h
H^{+}	$\bar{H^{+}}$	$\bar{H^{+}}$	$\bar{H^{+}}$	$\bar{H^{+}}$
H_2SO_4	H_2SO_4	H_2SO_4	H_2SO_4	H_2SO_4
HSO ₄ -	HSO ₄ -	HSO ₄ -	HSO ₄ -	HSO ₄ -
NH_4^+	NH_4^+	NH_4^+	NH_4^+	NH_4^+
NO ₃ -	NO ₃ -	NO ₃ -	NO ₃ -	NO ₃ -
Cl-	Cl-	Cl-	Cl-	Cl-
NH ₄ NO ₃	NH_4NO_3	NH_4NO_3	NH_4NO_3	NH_4NO_3
$(NH_4)_2SO_4$	$(NH_4)_2SO_4$	$(NH_4)_2SO_4$	$(NH_4)_2SO_4$	$(NH_4)_2SO_4$
	Na ⁺	Na ⁺	Na ⁺	Na ⁺
	Soildust	Soildust	Soildust	Soildust
	Pollen/spore	Pollen/spore	Pollen/spore	Pollen/spore
		$H_2O(l)$	$H_2O(ice)$	$H_2O(ice)$

Fossil- and Bio-fuel Emissions (Tg/yr)

Fossil-Fuel	Biofuel
3.2	1.6
2.4	6.5
0.03	0.3
	0.023
	0.14
	0.18
	0.08
	0.018
	0.16
	0.30
calculated	calculated
calculated	calculated
	Fossil-Fuel 3.2 2.4 0.03

+ 43 gases

BC/POC from Bond et al. (2004); other emis factors Andreae, Ferek

Modeled vs. Measured Annual Precip.

Despite factor of 20 lower resolution than data, model predicts locations of main features of observed precipitation and, without any flux adjustment, correctly does not produce a double ITCZ as nearly all models at coarse resolution do.

Modeled vs. Measured Annual Lightning Flash Rate

Model is unique in that it calculates lightning by accounting for size-resolved bounceoffs and charge separation in clouds. Model predicts nearly the magnitude and the location of the peak observed lightning (Congo) and most locations of lightning.

Modeled vs. Measured Thermal-IR

Modeled vs. Measured Paired in Space Monthly T/T_d

Data from FSL (2008)

Despite coarse resolution, model captures data features at exact location of data - Little numerical diffusion of water vapor or energy to stratosphere

Modeled vs. Measured Paired in Space Monthly O₃

Data from Logan et al. (1999)

Model predicts the magnitude and altitude of the lowerstratospheric ozone layer

30-Day Weather Predictions vs. Data

Results with no model spinup or data assimilation

Model vs. Measured Solar Radiation

Model predicted the location and magnitude of cloud reduction of sunlight for four days in a row

Externally- and Internally-Mixed BC Changes Due to FF +BF Soot + BF gases and to FF Soot Alone

FF soot

FF+BF soot + BF gases

BC from FF soot about half that of BC from FF+BF soot +BF gases

Changes in CO, Internally-mixed POM SOM, S(VI) due to FF+ BF Soot + BF gases

However, FF+BF soot +BF gases produce more other gases and particles

BC in Snow and Change in Snow Depth Due to FF+BF Soot + BF gases and FF Soot Alone

Both FF+BF soot +BF and FF soot inc. BC in snow & dec. snow depth

Surface Albedo Changes Due to FF+BF Soot + BF gases and to FF Soot Alone

Most albedo loss due to FF+BF soot +BF gases is due to FF soot

AOD Changes Due to FF+BF Soot + BF gases and to FF Soot Alone

FF+BF soot +BF gases increased AOD more than did FF soot

Cloud Absorption Due to FF+BF Soot

 \rightarrow FF+BF soot +BF gases increased cloud absorption more than FF soot

Cloud OD Changes Due to FF+BF Soot + BF gases and to FF Soot Alone

FF+BF soot +BF gases increased COD; FF soot decreased COD

Surface Solar Changes Due to FF+BF Soot + BF gases and to FF Soot Alone

 \rightarrow FF+BF soot +BF gases decreased surface solar; FF soot increased it

Temperature Changes Due to FF+BF Soot + BF gases and to FF Soot Alone

Most temperature inc. due to FF+BF soot +BF gases is due to FF soot

Temperature Changes Due to all anth. GHGs and to all anth. aerosol particles (after 3 y)

All aerosols cause more cooling than FF+BF soot cause warming

Changes in PM and Resulting Deaths due to FF+BF soot + BF gases and to FF soot

FF+BF soot + BF gases

FF soot

Deaths due to FF+BF soot+BF gases 10 times those due to FF soot

Changes in Ozone and Resulting Deaths due to FF+BF soot + BF gases

Biofuel burning increases ozone and ozone deaths

Arctic Warming Due to Ambient and Emitted Components of Global Warming

Latitude (degrees)

FF+BF soot + BF warm mid & high northern latitudes more than anthropogenic CH_4 or FF soot alone

Comparative Effects on Global Surface T of Eliminating Emissions and Ambient loadings

Eliminating FF+BF soot + BF gases cools climate more than eliminating anthropogenic CH_4 or FF soot alone

Global Cooling Due to Eliminating Anthropogenic CO₂, CH₄, FF+BF Soot Emissions only

Causes of Global Warming

M.Z. Jacobson

FF Soot, BC Global Warming Potential

20- and 100-yr warming due to FF soot (Δ T-FF soot):0.24 KGlobal FF soot emissions) (Δ E-FF soot):5.68 Tg

20-yr warming due to anthropogenic $CO_2 (\Delta T-CO_2)$: 0.5 K 100-yr warming due to anthropogenic $CO_2 (\Delta T-CO_2)$: 1-1.45 K Global CO_2 emissions (fossil+perm. deforest.) ($\Delta E-CO_2$) 29,700 Tg

 $GWP = (\Delta T-X/\Delta E-X) / (\Delta T-CO_2/\Delta E-CO_2)$

Х	20-year GWP	100-year GWP
FF soot*	2510	865 - 1255
BC in FF soot	4480	1545 - 2240

*(56% BC+43% POC+1% sulfate) Multiply by 12/44 for GWP relative to CO₂-C

Diesel with vs. w/o Trap; Diesel v. Gas

Diesel with a trap increases warming relative to gasoline during continuous emissions over 100 years when diesel has 18% or less mpg advantage over gasoline, and diesel PM emis.are 0.006 g/km or higher.

Summary

FF+BF soot is the second-leading cause of global warming behind CO_2 and ahead of CH_4 .

FF soot causes 2/3 of the FF+BF soot warming as BF gases and higher OC from BF burning offset some BF-BC warming.

Both BF and FF soot reduce surface albedo and snow/ice depth.

The GWP of fossil-fuel soot is \sim 860-1260 over 100 years and \sim 2500 over 20 years. That due to BC in soot is \sim 1500-2200 over 100 years and \sim 4500 over 20 years.

Diesel warms climate more than gasoline for over 100 y of continuous emissions when diesel mileage is $\leq 18\%$ better than gasoline and diesel PM ≤ 0.006 g/km higher than gasoline.