Experimental program with retrofit open particulate filters for diesel trucks

TNO: René van Asch, **Gerrit Kadijk,** Ruud Verbeek VROM: Henk Baarbé

Contents

- 1. Introduction
- 2. Objectives
- 3. Experimental set up
- 4. Test cycles
- 5. Test results

2

6. Discussion, Conclusions

1. Introduction

- In The Netherlands from 2006 onwards installation of HD retrofit soot filters (semi-open and closed) have been subsidized by the Dutch government
- HD retrofit soot filters

Type/Name	Req.eff. [%]	Subsidy [€]		Number installed
		150-225 kW 2006 / 2009	> 225 kW 2006 / 2009	2006 - 2009
Open / PM-cat	> 50%	4250 / 0	6250 / 0	15000
Closed / DPF	> 90%	7000 / 5500	9000 / 0	8000

2. Objectives

 Determination of the efficiency of used retrofit open particulate filters (PM-cat) for trucks in real world conditions

- PM-cat efficiency in urban areas?
- Effect of 1 hour motorway use on efficiency in urban areas?
- Aging effects?

- Soot loading versus efficiency?
- Regeneration behaviour

3. Experimental set up

Part 1:

- 1 HD-engine 355 kW Euro III on engine dynamometer (TNO-The Netherlands)
- 6 used PM-cats (open)

Part 2:

- 3 different Euro III delivery trucks on chassis dynamometer (VTT-Finland)
- 7 used PM-cats (open)

3. Experimental set up engine dyno

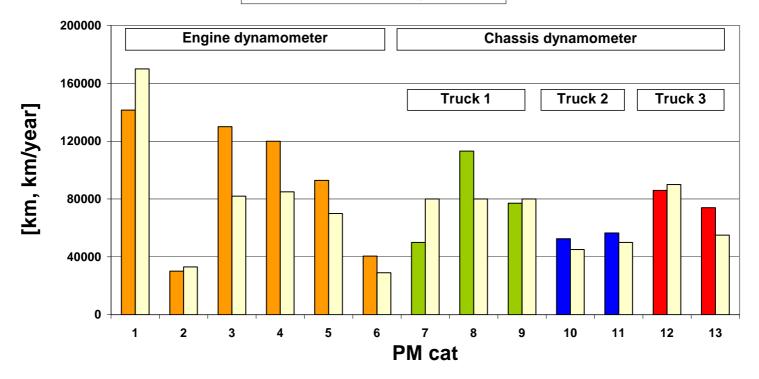
- 12 litre Euro III engine, 355 kW
- Full flow dilution tunnel + CVS
- AVL 439 smoke meter
- EN590 fuel (S<10 ppm)

- 6 used PM-cats of 1 type (pre oxicat + filter element)
- 65 emission tests engine out
- 130 emission tests PM-cat 1 6

3. Experimental set up chassis dyno

- 3 different delivery trucks Euro III
- Chassis dynamometer
- Full flow dilution tunnel + CVS
- EN590 fuel (S<10 ppm)

- 7 used PM-cats of 4 types
- 70 emission tests engine out
- 145 emission tests with PM-cat


Number of emission tests				
	Engine out	PM-cat		
Truck 1	21	61		
Truck 2	25	42		
Truck 3	24	42		

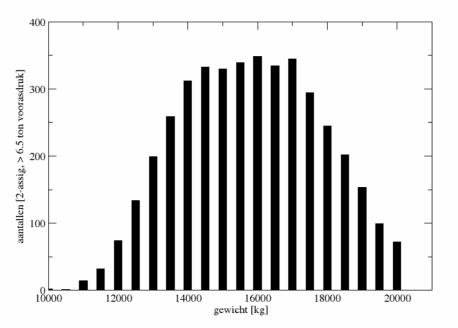
3. History and use 13 PM-cats

PM cat history

Sp. lifetime [km/year]

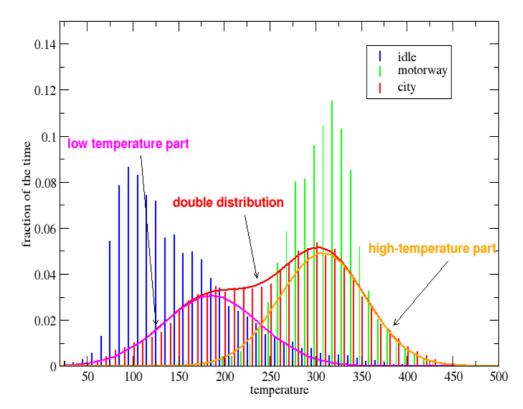
10 PM-cats 80.000 – 140.000 km and 3 PM-cats 30.000 – 50.000 km Most PM-cats have run 1 – 1,5 year

4. Test cycles


Engine dynamometer	Chassis dynamometer
WHTC urban part cold	City Cycle 11,5 tonne 1234 s
WHTC urban part hot 900 s	City Cycle 18,5 tonne 1234 s
ETC (Type approval PM-cat) 1800 s	Motorway 11,5 tonne
Motorway (85 km/h)	Motorway 18,5 tonne

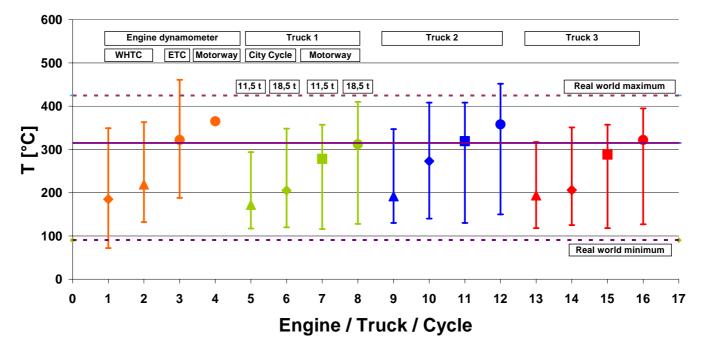
Do the test cycles cover real world conditions?

4. Motorway total vehicle weight distribution truck (real world)


Weighing in Motion [WIM]

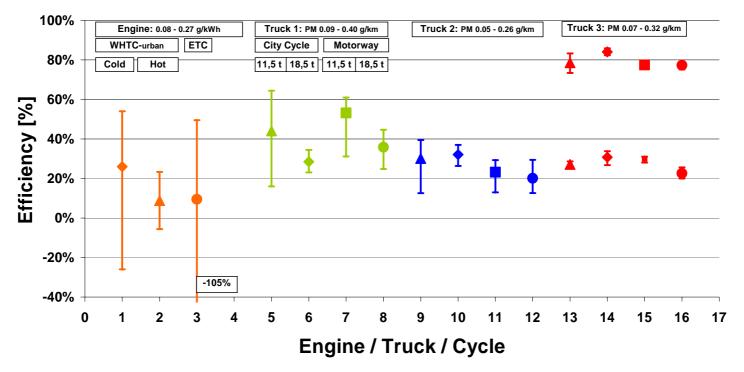
Minimum truck weight 11 tonne, Maximum truck weight 20 tonne (source: highway automatic truck weighing system, 4000 trucks)

4. Delivery truck real world temperature distribution


- Data: 1 truck, 300 days, 24h per day
- User profile: Start 90% vehicle load, motorway. Generally re-load at mid day. Empty in 2-3 stops (half day)

5. Test results temperatures pre PM-cat

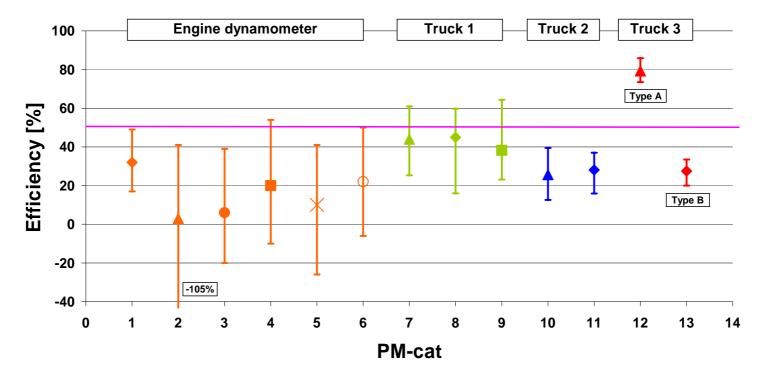
Temperature range pre PM-cat engine and chassis dyno test cycles + real world


Real world and laboratory PM-cat temperatures are similar Temperature pre PM-cat is adjusted to a real world level by adjustment of absorbed load

5. Test results PM-cat efficiencies per cycle

(minimum, average, maximum)

Efficiency range PM-cat engine and chassis dyno test cycles


Some PM-cats have large variation in efficiency

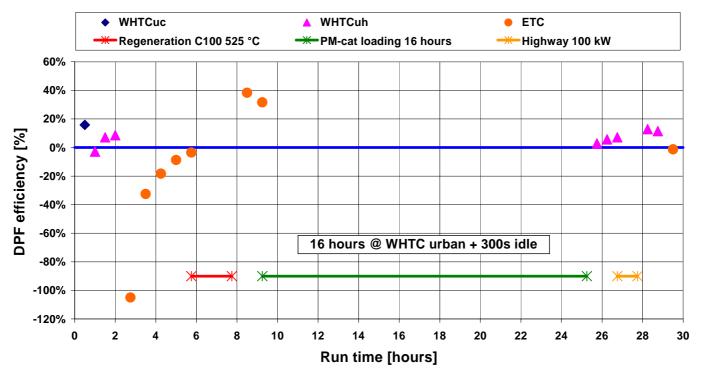
5. Individual PM-cat efficiencies

Efficiency range PM-cats engine and chassis dyno tests

Real world average efficiency of 13 PM-cats is 29.3 %. 1 PM-cat has an average efficiency of more than 50%

6. Discussion and conclusions

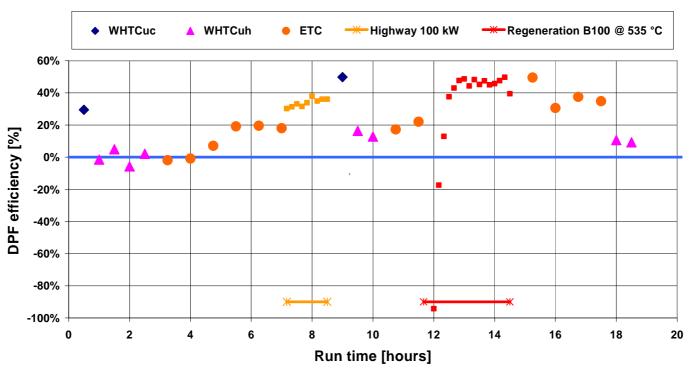
- Strong variation in efficiency between different PM-cat truck combinations
- Real world PM-cat efficiency lower than type approval:
 - Total average = 29 %
 - City driving = 29 %
 - Motorway driving = 29 %
- PM-cat efficiency is very dependent on the historic load pattern
 - Start type approval with realistic loaded PM-cat (>1 week real world)
 - real world load pre-conditioning (250 275 °C) should be a part of the type approval
- Separate test cycles for city and motorway driving should be considered for type approval


Thank you very much for your attention !

gerrit.kadijk@tno.nl TNO, The Netherlands + 31-15-2696730

16 13. ETH-Conference on Combustion Generated Nano Particles

5. Results PM-cat 2 engine dyno (33.000 km/year)

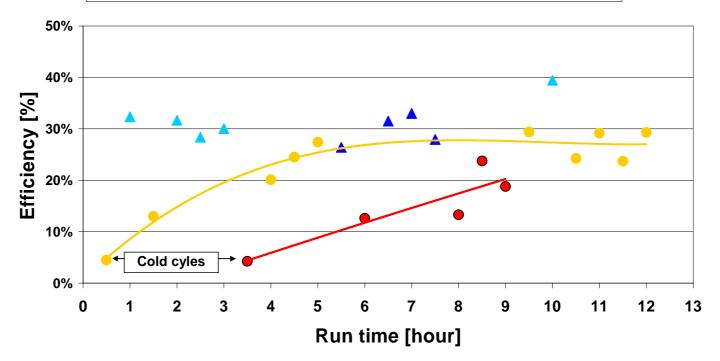


PM cat 2 efficiencies, 30.000 km

PM-cat 2 has negative efficiencies and probably is loaded with PM (history) Stored PM releases during ETC-tests (PM-cat efficiency -107% - -3%) Extreme regeneration (2 hours @ 500 °C) removes stored PM, PM-cat efficiency is 40 and 32% 16 hours WHTC-urban + idle + 1 hour motorway results in an inactive PM-cat (eff. -1 - +13%)

5. Results PM-cat 6 engine dyno (29.000 km/year)

PM cat 6 efficiencies, 40.000 km


First tests PM-cat efficiency is 0% and increases to 20% at higher loads (history) Steady state testing: PM-cat efficiency is 35 - 50%PM-cat efficiency in WHTC-urban cycle is -6 - 5 - 16%After heavy regeneration PM-cat efficiency in ETC-test is 31 - 50%.

5. Results PM-cat 1 chassis dyno Truck 2, 45.000 km/yr

Truck 2, Efficiencies PM-cat 1 (53.000 km)

▲ City Cycle 11,5 tonne ▲ City Cycle 18,5 tonne ● Motorway 11,5 tonne ● Motorway 18,5 tonne

PM-cat history determines efficiency After a period of city use, the PM-cat efficiency on the motorway is poor

