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Back to Basics: The Actors

Soot deposits
Creation: microstructure (porosity) vs soot aggregate structure (fractal dimension) 
and deposition conditions (Peclet number, compaction) 
Function: flow resistance (permeability)
Fate: reactivity (soot oxidation), “next day” effects (deposit restructuring)

Catalyst coatings
Creation: chemical composition/synthesis & coating technologies
Function: direct (microstructure vs. soot-catalyst contact) and indirect (NO2-
assisted oxidation), gas species (CO/HC) oxidation, NOx control
Fate: aging (e.g. thermal), ash induced impact

Ash Layers
Creation: formation and transport/deposition pathways, rapid testing procedures?
Function: increase flow resistance, impact reactivity
Fate: “on the wall” vs. “at the end of the channel”



flow control unit
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SAE 2000-01-1016, 2006-01-0874Operation-representative experimental 
setups (small samples/side stream 
technology) to screen technologies fast 
and identify input physicochemical 
parameters for modeling.

Some Tools of the Trade: 
Side-stream Reactor Technology



Some Tools of the Trade:
“Coating”/Functionalization Technologies

DPF functionalization technologies 
for high filtration efficiency, low 
pressure drop and promotion of 
soot-catalyst contact for direct, 
sustained oxidation (2-Layer 
concept of catalytic coating).

Konstandopoulos & Kostoglou (1998)
SAE 2005-01-0670, SAE 2008-01-0621
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Some Tools of the Trade:
Rapid Ash/Aging Rig

Fast ash aging deposition rig based on Aerosol Spray Pyrolysis of fuel-oil mixtures
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Konstandopoulos et al.  (1989-2009)

Some Tools of the Trade: 
Modeling & Simulation

Multi-scale
Multi-temporal
Multi-physicochemical 
Fast algorithms



Combustion Aerosol Standard (CAST) Burner
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CAST Primary Particle vs. Mobility Diameter

y = 0.0843x1.1693
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Diesel Soot Aggregate Morphology
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CONVECTION
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Soot aggregate deposit formation



0.0E+00

5.0E-13

1.0E-12

1.5E-12

2.0E-12

2.5E-12

0 5 10 15 20 25 30 35
Peclet

( ρ
xk

) s
oo

t (
kg

/m
)

95 nm
115 nm
129 nm
145 nm
161 nm
197 nm

SCFdfk prsoot ⋅⋅⋅−⋅=× 2)()1(

Soot flow resistance  (ρsootx ksoot )-1

~)( εερρ

n

Pe
PePe −

∞ +⋅−−= )1()1(1)( 0εε

SAE-2005-01-0946



“Next day” increase of flow conductance (ρsootx ksoot)

0.0E+00

2.0E-13

4.0E-13

6.0E-13

8.0E-13

1.0E-12

1.2E-12

0 1 2 3 4 5 6

Pe

pr
od

uc
t (

kg
/m

)

Loading data

Permeability data

“fresh”

“next-day (aged)”

ρ s
oo

tx
k s

oo
t

CAST setting 60 nm

Cake filters loaded with CAST soot at different Pe



What causes the increase of flow conductance (ρsootx ksoot)?
2( ) (1 ) ( ) ( , )

soot soot pr prk f d SCF d Tρ ρ ε ε× = ⋅ − ⋅ ⋅ ⋅

If capillary condensation menisci induce homogeneous compaction then ε is reduced 

ρsootx ksoot
is reduced 

If dpr is increased by condensation of ambient humidity then ε is reduced

Crack images from google

A non-homogeneous restructuring must occur similar to: 
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Mathematical Model of Cracked Soot Deposit
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y = 1.616x2 + 1.2753x + 0.8995
R2 = 0.9923
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Soot Oxidation Catalyst Chemistry Development 
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CO, HC  and  NO oxidation functions
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Scaled Up DPF on Engine Bench

SAE 2009-01-0287
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Filtration Efficiency by Number
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Soot Loading – Effect of Ash on Uncoated Filters
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Soot Loading – Effect of Ash on Catalyzed Filters

  Catalyst P

0

10

20

30

40

50

60

0 1 2 3 4 5 6
Challenge  mass load (g/m2)

Pr
es

su
re

 d
ro

p 
(m

ba
r)

Ash-free

Ash-loaded, 21 g/m2 oil-derived ash

 Catalyst M

0

10

20

30

40

50

60

0 1 2 3 4 5 6
Challenge mass load (g/m2)

Pr
es

su
re

 d
ro

p 
(m

ba
r)

Ash-free

Ash-loaded, 12 g/m2 oil derived ash

The existence and extent of the deep bed filtration regime (irrespective of whether 
the filter is coated or uncoated) determines how the accumulating ash layer impacts 
the filter pressure drop during soot loading.

Soot Soot

Effect of ash

Catalyzed filter with Catalyst P and M by conventional wet chemistry methods



Soot Oxidation – Effect of the Catalyst

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

300 350 400 450 500 550 600 650 700
Temperature (C)

C
on

ve
rs

io
n 

(-)
Uncoated
Catalyst P
Catalyst M

Catalyst M significantly enhances direct soot oxidation.

Catalyst P has no direct soot oxidation effect.



Filter Regeneration – Effect of Ash on Catalyst P
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Filter Regeneration – Effect of Ash on Catalyst M

Significant loss of the catalytic activity of Catalyst M due to ash. The ash-
loaded catalyzed filter oxidizes soot like the uncoated ash-loaded filter.
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Filter Regeneration – Effect of Ash the CO Selectivity
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Effect of Ash on Filtration Efficiency

Uncoated filter: 

Size-specific filtration efficiency – Effect of ash 

Catalyst P filter: 

Size-specific filtration efficiency – Effect of ash 

Significant increase in the filtration efficiency due to ash particle 
accumulation for both the uncoated and the catalyzed filter.

Similar results for catalyst M.
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Conclusions: Next Frontiers

Contact micromechanics of soot aggregate-catalyst, soot mobility/restructuring

Engineer catalyst particle substructure and reactivity with ash component 
tolerance

Ash: Can we get rid of it?
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