Air pollution during pregnancy and lung function in newborns: a birth cohort study

MINSELSPITAL

UNIVERSITÄTSSPITAL BERN HOPITAL UNIVERSITAIRE DE BERNE BERN UNIVERSITY HOSPITAL

June 23 2009 Philipp Latzin

KINDERKLINIKEN Bern

Medizinische Universitätskinderklinik

Effects of air pollution on respiratory health

Acute effects on:

- Symptoms (e.g. cough)¹
- Lung function in adults (FEV₁)²
- Inflammation (eNO)³

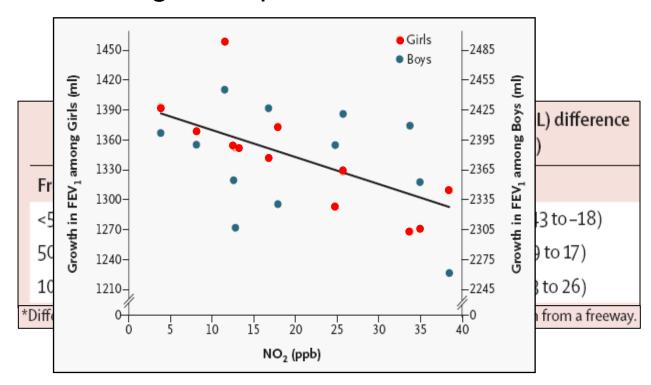
Chronic effects on lung growth:

- 3200 children in Mexico: regional pollution⁴
- 1150 children in Austria: seasonal exposure⁵

1 Ward et al., Occup Env Med, 2001

3 Nickmilder et al., JAMA 2003

5 Frischer et al., AJRCCM 1999


2 McCreanor et al., NEJM, 2007

4 Rojas-Martinez et al., AJRCCM, 2007

Chronic effects on lung growth

- Californian Health Study, 1700 children, 10-18 years:
 - background pollution¹:

1 Gauderman et al., NEJM, 2004

2 Gauderman et al., Lancet, 2007

Growth and development of the airways

- Pre- and early postnatal phase important ¹
- Dependent on genetics and environment¹
- Effect of prenatal smoke exposure well known²
- E.g. on tidal breathing³ and lung growth⁴
- No data on effects of prenatal air pollution
- Longterm effects of early lung function changes^{5,6}

1 Kotecha, Ped Resp Rev, 2000;

2 Stocks et al., Review in Respirology, 2003

3 Stick et al., Lancet, 1996

4 Hoo et al., AJRCCM 1998

5 Bush et al., COPD 2008

6 Kuehni et al., Lancet 2008

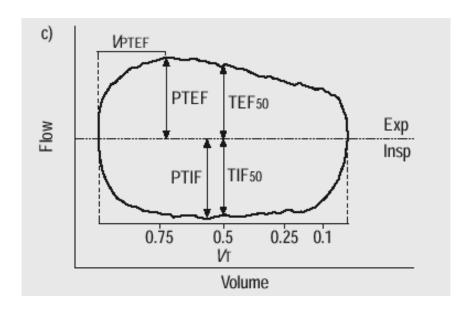
Question

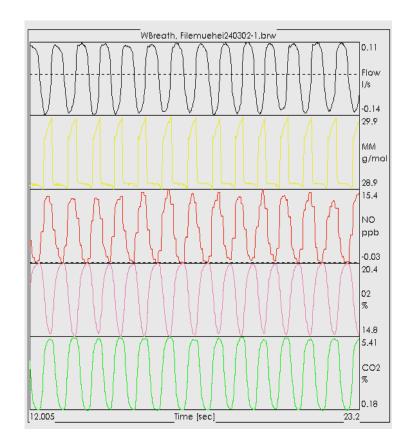
Does prenatal exposure to air pollution influence lung growth and inflammation in the healthy newborn?

Subjects

Prospective birth cohort since 1999

(unselected term-born infants of healthy mothers)


Lung function at age 5 weeks (unsedated)



Outcome parameters

- Minute-Ventilation (Frequency x Tidal volume)
- Mean expiratory flow
- Lung volume (FRC)
- Ventilation homogeneity (LCI)
- Inflammation (eNO)

Exposure to air pollution

Exposure to air pollution during pregnancy depends on temporal and spatial variability:

Temporal variability:

Mean background pollution level in pregnancy measured at regional monitor:

Ozone (O₃), NO₂ & PM₁₀

Spatial variability:

Local exposure (home address) GIS coded as distance to next class-II road (> 6m wide)

Analyses

Inclusion of 260 infants

No lung function (sleep status): 27 subjects

Respiratory tract infection at time of lung function (±1 wk): 10 subjects Technical problems with eNO-analyser: 11 subjects

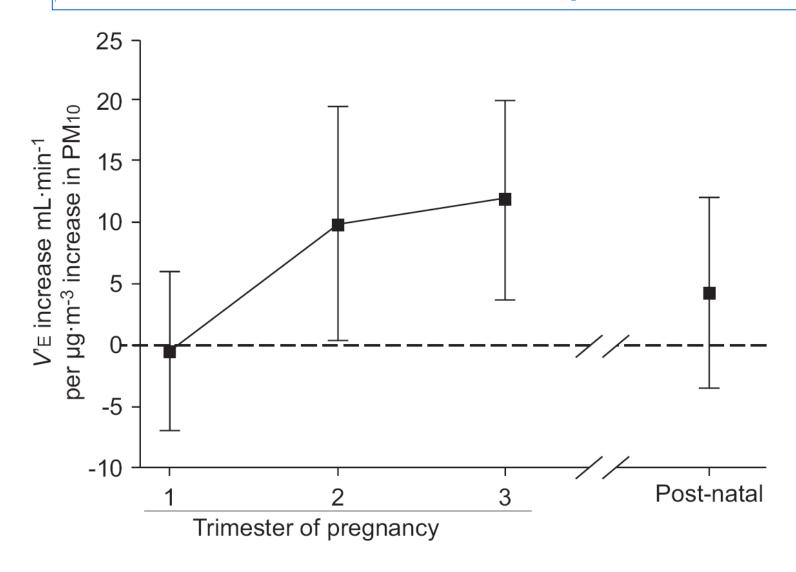
- Tidal breathing data in 223 (86%) infants.
- eNO data in 212 (82%) infants.

Analysis:

Linear regression analysis using 2 models:

- "Basic model" for mean pollution level and distance to street
- "Full model" adjusted additionally for possible confounders (gender, age at measurement, season of birth, outdoor temperature and smoking in pregnancy)

Results I – associations


	Basic model			Full model		
	coefficient	CI 95%	p Value	coefficient	CI 95%	p Value
Prenatal PM ₁₀ and Minute ventilation [mL/min]	19.9	4.7 – 35.0	0.010	24.7	8.9 – 40.5	0.002
Prenatal PM ₁₀ and Mean expiratory flow [mL/sec]	0.59	0.01 – 1.17	0.045	0.80	0.21 – 1.40	0.008
Prenatal NO ₂ and eNO [ppb]	0.67	0.23 – 1.10	0.003	0.96	0.44 – 1.48	<0.001

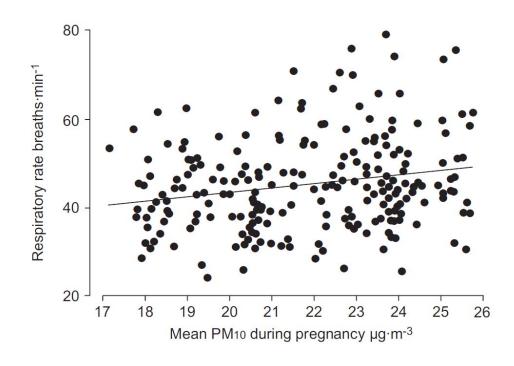
- Results are given as change per μg/m³ increase in air pollution
- Results on PM₁₀ confirmed using other parameters of tidal breathing
- No association for ozone exposure
- No association for distance to street
- No association for FRC or ventilation inhomogeneity

UNIVERSITÄT BERN

Results II – time of exposure

Results III – stratification

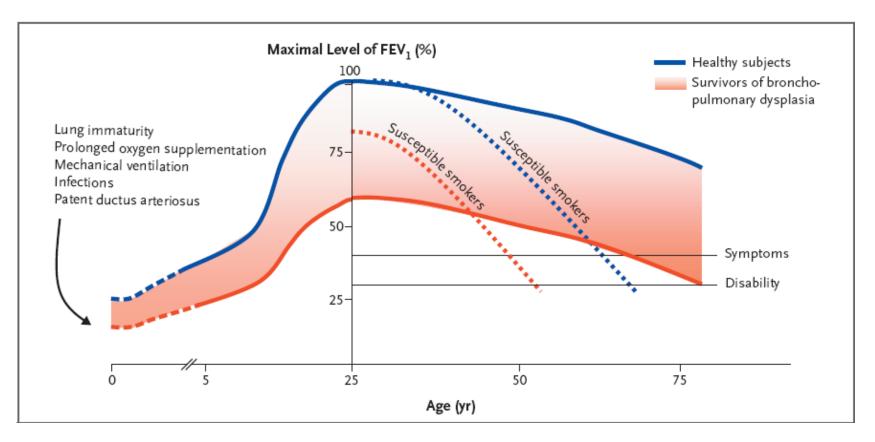
	Risk factor present		No risk factor			
	coefficient	CI 95%	coefficient	CI 95%	p-value for interaction	
PM ₁₀ and minute ventilation						
Living within 200 m to major road (110 subjects)	41.2	19.1 – 63.4	8.7	-13.8 – 31.2	0.009	
Maternal smoking in pregnancy (26 subjects)	81.8	27.2 – 136	18.3	1.9 – 34.7	0.07	


Results were comparable for the association between prenatal NO₂ and eNO in the newborns.

Results IV - relevance

What do the results mean?

IQR (25.-75. Percentile) increase in PM₁₀ is associated with an increase in respiratory rate of 6.4/min (mean 44/min).


Mean (IQR) Bern: 22 (20-24) μg/m³

Mean (IQR) Mexico-City: 68 (56-92) μg/m³

Possible relevance

"Tracking" of lung function into older age

Baraldi & Fillipone, NEJM 2007

Conclusions

Our results suggest that:

- Prenatal exposure to NO₂ leads to airway inflammation in the newborn (NO)
- Higher levels of PM₁₀ during pregnancy lead to increased respiratory need of the newborn
- Effects are more pronounced in infants exposed to additional risk factors
- Later pregnancy seems to be more important

Thanks to

Urs Frey & Team of Pediatric Pulmonology, Childrens Hospital, University of Bern

Anke Huss, Martin Röösli, Claudia Kuehni, ISPM University of Bern