

Design and operation characteristics for electrostatic precipitators for wood combustion particles as function of combustion conditions

<u>Adrian Lauber¹</u> Thomas Nussbaumer^{1,2}

¹Bioenergy Research Group Lucerne University of Applied Sciences ²Verenum Research SWITZERLAND

 13^{th} ETH Conference on Combustion Generated Nanoparticles Zurich, 22 – 24 June 2009

1. Introduction

- 2. Theory
- 3. Experimental Setup
- 4. Results
- 5. Conclusions

PM10 from Wood Combustion

In Switzerland, biomass combustion contributes significantly to PM10 in the ambient air.

ESP for Wood Combustion

- Electrostatic precipitation (ESP) is commonly applied for particle separation in large scale utility boilers. Design parameters are well known for coal, e.g. [White, 1963]

- Today, ESP's are applied for small and medium-scale applications for heating purposes:

for wood boilers > 500 kW

[Scheuch]

for wood stoves < 70 kW

[Oekotube]

- 1. Introduction
- 2. Theory

- 3. Experimental Setup
- 4. Results
- 5. Conclusions

verenum

Particle Properties

C/H	-	> 6 – 8 [5]	≈1 (< 2)
Electrical conductivity	medium	high	low (isolating)*
ESP [3]	ideal	re- entrainment	back- corona

[3]: Parker, 1997 [4]: Roempp, 1989 [5]: Leuckel and Römer, 1979 *primary tar: isolating, Secondary tar and PAH: semiconductiv [4]

Hochschule Luzern

Particle Types Salt COC ('Tar') Soot UNIDAMENT 100 000 [mg/Nm ³] $(11\% O_2)$ 10 000 CO 1 000 100 B 10 3 0 2 4 5 [-]

Excess Air Ratio λ

[Nussbaumer, Energy & Fuels 2003, 17]

Hochschule Luzern

ESP Operation with Automatic Wood Boiler

verenum

- 1. Introduction
- 2. Theory
- **3**. Experimental Setup
 - 4. Results
 - 5. Conclusions

Experimental Setup

Experimental Setup

Calculated ESP efficiency depending

ESP: L 1000 [mm] D 100 [mm] U 1 [m/s] SCA 45 [s/m] U_{max} -65kV

Particle generator: Pellet boiler modified Q 15kW

- 1. Introduction
- 2. Theory
- 3. Experimental Setup
- 4. Results
 - 5. Conclusions

Gas and Chemical Analysis

Specific Dust Resistivity

*Dry: 5 vol.-% H_2O e.g. excess air ratio 3 & wood moisture content 5% *Wet: 20 vol.-% H_2O e.g. excess air ratio 1.2 & wood moisture content 50% *Ref: 13 vol.-% H_2O : excess air ratio 1.5 & wood moisture content around 30%

Hochschule Luzern

Engineering and Architecture

[3]: Parker, 1997

IU Characteristic / ESP efficiency

Dust Layer Build-up

Conductiv particles: \rightarrow 'dendritic' build-up

weak adhesion / re-entrainment

Normal or isolating particles: → homogeneous build-up

Salt

COC

stable layer

sticky layer

[Blanchard et. all., 2002]

- 1. Introduction
- 2. Theory
- 3. Experimental Setup
- 4. Results
- 5. Conclusions

Conclusions 1/2

- Three different particle types from wood combustion have been identified which correspond to different combustion regimes
- 2. The three particle types exhibit completely different physical and chemical properties, among which the electrical conductivity is most relevant for ESP operation
- 3. Particles from good combustion (mainly salts) exhibit ideal conductivity for ESP
- 4. Soot reveals high conductivity thus enabling high precipitation efficiency but severe re-entrainment of agglomerated particles
- 5. COC exhibit low conductivity thus leading to backcorona which limits ESP operation *Verenum* Hochschule Luzern Engineering and Architecture

Conclusions 2/2

- 6. ESP operation for good and stationary conditions during wood combustion with mainly inorganic particles causes no operation problems, while it may be critical e.g.
 - during start-up due to COC from low temperatures or
 - during throttled air, either due to COC at low temp. or due to soot from lack of oxygen.

Both conditions are common for heating applications.

Outlook

- ESP availability is crucial and needs to be improved by three measures:
- 1. Stationary combustion operation and plant design with two boilers and two ESP for variable load
- 2. Process integrated control of ESP with specific information as indicators for the particle properties
 - flue gas temperature (as today) plus:
 - excess air ratio
 - combustion temperature
 - water content of the fuel

This increases the operation regime of the ESP

- 3. Measures to avoid re-entrainment:
 - Limitation of gas velocity to < 1.5 m/s
 - optimised shape of collecting plates
 - shorter dedusting intervall during re-entrainment regimes

Hochschule Luzern

Acknowledgments

Swiss Federal Office for Energy (BfE)

Prof. Dr. Heinz Burtscher, FHNW

