# Actual changes in emission limits for ships



#### Peter Lauer

GEBE - Advanced Development Environmental Engineering

13th ETH-Conference on Combustion Generated Nanoparticles

© MAN Diesel

2009/06/22 < 1 >

# Outline

MAN

- Marine emission standards are either regional (e.g. US-EPA, CARB, EU, Rhine river, Norway, Sweden) or international (IMO)
- This presentation will focus on:
  - Contribution of shipping, and background information for policy making
  - IMO general information, present international standards, and future limits



#### **Emissions and ships contribution**





- Shipping in numbers globally (2007): 100,000 ships >100 gt total of 369 million tons fuel per year whereof 286 million tons of HFO (~50 % of worldwide HFO production) and 83 million tons of marine distillates
- Shipping is the most efficient method for transportation of any cargo and demand is driven by the world economy
- 95 % of trans-continental transport and 70 % of total global trade
- Responsible for 14% of anthropogenic NO<sub>x</sub> 7% of SO<sub>2</sub> and only 3.3% of CO<sub>2</sub> (total transport sector is responsible for 42% NO<sub>x</sub>, 10% SO<sub>2</sub> and 27% CO<sub>2</sub>)

Nevertheless improvements are possible

# Specific emissions by transport modes (distillate vs. HFO)





2009/06/22 4

# $NO_{X}$ emissions from shipping worldwide distribution





Source: Ministry of Ecology, Corbett 2007, Ship Emissions: A Global Assessment

5

# Radiative forcing since preindustrial times by substance & transport sector





- (A) Global mean RF (mW/m<sup>2</sup>) for 2000 due to transport, relative to pre-industrial times.
- (B) Global mean net RF (including all components in A) for 2000 due to transport, relative to pre-industrial times, per sector. Uncertainty ranges are given for 1 SD.

#### ! But:

CH<sub>4</sub>,SO<sub>4 dir/ind.</sub> are short-lived substances compared to CO<sub>2</sub>



© 2008 by The National Academy of Sciences of the USA Fuglestvedt J. et.al. PNAS 2008;105:454-458

### CO<sub>2</sub> emissions by different transport modes



7

 $CO_2[g/t-km]$ 700 Aviation aircraft 673 600 Road light duty vehicle 500 410 400 Road heavy duty vehicle 300 Rail 80 TEU 200 91 Container ship 6600 TEU, 100 28 25 knots 8 0

Source: ICS Climate change and shipping ECSA position paper, Jan 2008





- **Today** no mandatory regulations for ships about CO<sub>2</sub> emissions exist
- Future restrictions under the Green House Gas (GHG) discussions are likely but not decided yet
- Efficient CO<sub>2</sub>-reduction requires a holistic approach of the whole ship
  - Energy efficiency design index: Assesses the overall efficiency of the vessel design
  - Energy efficiency operational index: Assesses the overall efficiency of the ship operation
  - Market based instruments:

Under controversial discussion (UNFCCC annex I vs. annex II states)

# Outline

MAN

- Marine emission standards are either regional (e.g. US-EPA, CARB, EU, Rhine river, Norway, Sweden) or international (IMO)
- This presentation will focus on:
  - Contribution of shipping, and background information for policy making
  - IMO general information, present international standards, and future limits



2009/06/22

# **International Maritime Organization**



- Specialized agency of the United Nations with responsibility for safety and security at sea and the prevention of maritime pollution from ships (worldwide harmonized regulations)
- IMO Convention 168 member states (ship safety regulations e.g. SOLAS)
- MARPOL73/78 148 member states
   (99% world merchant fleet)
   (ship pollution e.g. sewage, garbage, oil spill)
- MARPOL73/78 Annex VI actually ratified by 54 states covering about 83% of the world merchant fleet (ship air pollution e.g. NO<sub>x</sub> SO<sub>x</sub>)
- Organizational structure: Assembly, Council, Committee, Sub-Committee, Working-/Drafting- /Correspondence-Groups
- Working principle: one state = one vote

What is IMO

The International Maritime Organization (IMO) is the specialised agency of the United Nations with responsibility for safety and security at sea and the prevention of marine pollution from ships.

Established by means of a Convention adopted in 1949, IMO first met in 1959 and is the only United Nations agency with its headquarters in London. Over the years IMO has adopted some 40 Conventions and Protocols and numerous Codes and recommendations relating to safety, pollution prevention, security measures, liability and compensation issues and facilitation of international maritime traffic.

> IMO: Safe, secure and efficient shipping on clean oceans

Normational Convention on Maritime Search and Rescale (242), 1979 International Convention on Load Lines (LL), 1964 LL Protocol 1988

Protocol on Space Requirements for Special Bia Personger Ships, 1973 International Convention for Safe Contained

> Convention on the International Martime Satellite Organization (INMACSAT), 197 The Terrecolines International

> > Nessels (SVR), 1977 SV Protocol 1993) Marine pollution International Convertion for the Prevention of Publics from Paton 1973, an endfelle by the Paton 1973 induces the Convertion Spatial Armenne VE (SMR-Secon Spatial Armenne VE (SMR-Secon Spatial Armenne VE (SMR-Secon Spatial Market Strategy and Strategy Strategy Market Strategy Strategy Strategy Armenne II (South in packaged Isen) Armenne II (South in packaged Isen) Armenne II (South in packaged Isen)

Annes V (Sarbage) is optional MARCO, Protocol 1997 Annes II (Ar policien) is optional

Environment of the High Sector of Cause of Cause Publicate Council on BUTSININICAL 1993 NEEDENTING MARKEN 1992 INTERVENTION IN Presentation of Marken Public Publication of the Presentation of Marken Public Publication of the Public P Chiefe GLMO, 1976 LLMC Protocol 1996 Mineratorical Convention on Lubility and Comparisation for Demagn in Convention with the Carnings of Hacardans and Nasicas Substances (Hyde, 1996 Protocol on Proparationes, Regiona and Co-operation to Publish Incodents by Hacardans and Nasicas Substances (Hyde, Totocol), 2000 International Convention on Chiel Lubility for Darker Of Pathon Industry, 2001 Pathon Damage, 2001 Pathon Damage, 2001 Pathon Damage, 2001 Pathon Damage, 2001 Damanting Convention on Toronge Measurement of Edispe ((MeMAG), 1966 Convention for the Suppression of Unlease Auto Against die Subry of Masterne Bacycologie (LUB), 1908 Protocol for the Suppression of Unlease Auto Support die Subry of Masterne Bacycologie (LUB), 1908

ne Carriage of Nuclear Material (NUCLEAR), 1971 Convention relating to the Carriage of open and their Luczage by Sea (PNL), 1974

o on Limitation of Liability for Maritim

1974

and 2003

Contractor Shell, 1988 Remotional Committion on Salvage (SALVACE), 198



MAN Diesel

© MAN Diesel



#### ■ NO<sub>x</sub>- limit, Regulation 13(3) (Tier I):

17.0 g/kWh n < 130 rpm <u>45 \* n <sup>-0.2</sup> (130 rpm < n < 2000 rpm)</u> 9.8 g/kWh n >= 2000 rpm (01 Jan 2000, **30% reduction** compared to mid 1990ies)

#### SO<sub>x</sub> – limit, Regulation 14:

worldwide fuel sulfur cap @ 4.5 wt.% S (19 May 2006) and  $\text{SO}_x$ -emission controlled area (SECA) @ 1.5 wt.% S or scrubber (e.g. Baltic Sea 19 May 2006 & North Sea + Channel 21 Nov 2007)

Adopted in September 1997,

in force since 19 May 2005 with effective date 01 January 2000 (for  $NO_x$ )

Actually 54 states covering about 83% of the world merchant fleet have ratified the MARPOL Convention Annex VI

MAN Diesel

## IMO future NO<sub>x</sub> limits Tier II & III Revised MARPOL Annex VI



Tier II: NO<sub>x</sub> – limit, Regulation 13(4)

14.4 g/kWh n < 130 rpm <u>44 x n <sup>-0.23</sup> (130 rpm <= n < 2000 rpm)</u> 7.7 g/kWh n >= 2000 rpm about **20% reduction** vs. Tier I

#### Tier III: NO<sub>x</sub>- limit, Regulation 13(5):

3.4 g/kWh n < 130 rpm <u>9 x n <sup>-0.2</sup> (130 rpm <= n < 2000 rpm)</u> 2.0 g/kWh n >= 2000 rpm **80% reduction** vs. Tier I only in **Emission Control Areas** (ECA), for other areas Tier II

| MEPC adoption:               | 09 October 2008 |
|------------------------------|-----------------|
| Effective date IMO Tier II:  | 01 Jan 2011     |
| Effective date IMO Tier III: | 01 Jan 2016     |



#### **IMO NO<sub>x</sub> Regulation 13**



## IMO SO<sub>x</sub> Regulation 14 Revised MARPOL Annex VI



- **Global** IMO Regulations, mandatory:
  - **4.50 wt.%** S prior to 01 Jan 2012
  - **3.50 wt.%** S on and after 01 Jan **2012** and
  - 0.50 wt.% S on and after 01 Jan 2020 (or 2025, subject to availability review)
- Emission Controlled Areas (ECA), mandatory:
  - **1.50 wt.%** S prior to 01 July 2010
  - 1.00 wt.% S on and after 01 July 2010 and
  - 0.10 wt.% S on and after 01 Jan 2015
  - Existing: Baltic Sea, North Sea & Channel
  - Expected: Black Sea, Mediterranean Sea, US Coast + Canada, Caribbean
- Distillate not mandatory, alternatively Exhaust Gas Cleaning (EGCS) allowed
- **PM reduction** by fuel sulphur reduction, no explicit PM limits



# **PM reduction by fuel S limitation**

- No explicit PM limitation <sup>2</sup>/<sub>2</sub> mandatory <sup>2</sup>/<sub>2</sub>
- PM reduction by fuel sulphur reduction
- Reduction from e.g. 1.8% down to 0.07% sulphur results in PM reduction of about 70%



15

### IMO Implementation Schedule Revised MARPOL Annex VI







16

#### **Emission Controlled Areas**





2009/06/22 17



18

#### Expected long term ship emission reductions due to Revised MARPOL Annex VI

|                 | Global    | ECA  |
|-----------------|-----------|------|
| NO <sub>x</sub> | 15 – 20 % | 80 % |
| SOx             | 80 %      | 96 % |
| PM              | 73 %      | 83 % |

Source: Second IMO GHG Study 2009, International Maritime Organization London UK, April 2009, Buhaug et al.

#### **Abbreviations**



- IMO: <u>International Maritime Organization (United Nations Agency)</u> <u>http://www.imo.org</u>
   MEPC: <u>Marine Environmental Protection Committee</u>
   MARPOL: International Convention for the Prevention of Pollution from Ships, 1973, as modified by the protocol of 1978
   Annex VI: Regulations for the Prevention of Air Pollution from Ships
- EIAPP <u>Engine International Air Pollution Prevention Certificate</u>
- ECA: <u>Emission Control Area</u>
- HFO: <u>H</u>eavy <u>F</u>uel <u>O</u>il
- GHG: <u>G</u>reen <u>H</u>ouse <u>G</u>ases
- EGCS: <u>Exhaust Gas Cleaning System</u>
- UNFCCC: <u>United Nations Framework Convention on Climate Change</u>
- US-EPA: <u>United States Environmental Protection Agency</u>
- NGO: <u>Non Governmental Organization</u>



- PNAS The National Academy of Sciences of the USA, Fuglestvedt J. et al., 2008; 105: 454-458
- Lloyd's Register Fairplay database, 2007
- Second IMO GHG Study 2009, International Maritime Organization London UK, 9<sup>th</sup> April 2009, Buhaug et al.
- BP oil products
- Swedish Network of Transport and the Environment
- Ministry of Ecology, Corbett 2007, Ship Emissions: A Global Assessment
- ICS Climate change and shipping ECSA position paper, Jan 2008

### Thank you for your attention!





MAN Diesel

13th ETH-Conference on Combustion Generated Nanoparticles

© MAN Diesel 2009/06/22

6/22 < 21 >



# Backup

#### **Emissions and ships contribution**



- Exhaust gas composition of HFO operated 4-stroke Diesel engines
- Fuel sulphur content 3 % m/m



MAN Diesel

### NO<sub>x</sub> & SO<sub>2</sub> emissions





#### http://edgar.jrc.it

## CO<sub>2</sub> emissions





#### Source: Second IMO GHG Study 2009, International Maritime Organization London UK, April 2009, Buhaug et al.

| MAN Diesel | 13th ETH-Conference on Combustion Generated Nanoparticles | © MAN Diesel | 2009/06/22 | 25 |
|------------|-----------------------------------------------------------|--------------|------------|----|
|------------|-----------------------------------------------------------|--------------|------------|----|





Expected GHG emission reduction 25 - 75% by ship efficiency increase

through technical and operational measures



Figure A2-1 - Use of propulsion energy on board a small cargo ship, head sea, Beaufort 6

Source: Second IMO GHG Study 2009, International Maritime Organization London UK, April 2009, Buhaug et al.

| MAN Diesel | 13th ETH-Conference on Combustion Generated Nanoparticles | © MAN Diesel | 2009/06/22 | 26 |
|------------|-----------------------------------------------------------|--------------|------------|----|
|------------|-----------------------------------------------------------|--------------|------------|----|

#### **Oil products - worldwide**







### Quality of fuel oil for ships MEPC 59/4/1 as of 3 Feb. 2009





% of Samples

### Quality of fuel oil for ships MEPC 59/4/1 as of 3 Feb. 2009



#### Sulphur monitoring programme 1999-2008

| Year | Document       | Corresponding quantity of | Number of | Tonnes per | Average |
|------|----------------|---------------------------|-----------|------------|---------|
|      | reference      | residual fuel oil         | samples   | bunkering  | sulphur |
|      |                | (tonnes)                  | tested    |            | content |
| 1999 | MEPC 45/INF.12 | 47,000,000 tonnes         | 53,000    | 886        | 2.7%    |
| 2000 | MEPC 47/INF.2  | 49,000,000 tonnes         | 54,000    | 907        | 2.7%    |
| 2001 | MEPC 48/INF.4  | 56,000,000 tonnes         | 62,000    | 903        | 2.7%    |
| 2002 | MEPC 49/4/1    | 59,000,000 tonnes         | 63,000    | 936        | 2.6%    |
| 2003 | MEPC 52/4/8    | 67,395,141 tonnes         | 66,958    | 1006       | 2.7%    |
| 2004 | MEPC 53/4      | 74,408,066 tonnes         | 66,312    | 1122       | 2.7%    |
| 2005 | MEPC 55/4/1    | 82,436,438 tonnes         | 79,592    | 1035       | 2.7%    |
| 2006 | MEPC 56/4      | 86,857,565 tonnes         | 86,117    | 1008       | 2.59%   |
| 2007 | MEPC 57/4/24   | 92,757,373 tonnes         | 97,172    | 954        | 2.42%   |
| 2008 | MEPC 59/4      | 97,600,555 tonnes         | 106,925   | 913        | 2.37%   |

#### Structure of the IMO







States (1 vote) & non governmental organizations (NGO) (consultative, nonvoting) Assembly:

- Adopts new conventions (75% consensus) → national ratification

Committee:

• Adopts annexes & amendments ( >50% consensus)  $\rightarrow$  national ratification

Sub-committee:

 Develops draft for annexes & amendments, works in close collaboration between states and NGO's

#### Working- / Drafting- / Correspondence-Groups:

 Installed by (sub-) committee according to defined terms of references to elaborate matters of technology / limits / competence / applicability / details / draft text / delivers background information / collects sentiments, works in close collaboration between states and NGO's

<31>



**168 states ministerial delegations**, supported by consultants, e.g. Germany:

- Ministry of Transport (BMVBS)
- Consultants: GL, SeeBG, UBA, VdR, VSM
- Delegation (1 vote) approx. 2 20 persons, but European Commission may dictate how to vote

#### approx. 65 NGO's, e.g.:

- Friends Of The Earth International (FOEI), Greenpeace International
- International Organization for Standardization (ISO)
- International Association of Classification Societies (IACS)
- Oil Companies International Marine Forum (OCIMF)
- Association of European Manufacturers of Internal Combustion Engines (EUROMOT)
- Delegation (nonvoting) approx. 1-3 persons

< 32 >





- United States Environmental Protection Agency emission limits: US-EPA 40 CFR Parts 94 and others, Control of emissions of air pollution from locomotive engines and marine compression-ignition engines less than 30 liters per cylinder; Final Rule, Federal Register Vol. 73 No 88, May 06 2008
- Applicable for all US flagged vessels

# US EPA Tier 2 present standard



| Category | Swept volume / cyl.      | NO <sub>x</sub> + HC     | CO  | РМ   | Year |
|----------|--------------------------|--------------------------|-----|------|------|
| 1        | <0.9 and >=37kW          | 7.5                      | 5.0 | 0.4  | 2005 |
| 1        | 0.9 - <1.2               | 7.2                      | 5.0 | 0.3  | 2004 |
| 1        | 1.2 - <2.5               | 7.2                      | 5.0 | 0.2  | 2004 |
| 1        | 2.5-<5                   | 7.2                      | 5.0 | 0.2  | 2007 |
| 2        | 5 - <15                  | 7.8                      | 5.0 | 0.27 | 2007 |
| 2        | 15 - <20 and <3300kW     | 8.7                      | 5.0 | 0.5  | 2007 |
| 2        | 15 - <20 and<br>>=3300kW | 9.8                      | 5.0 | 0.5  | 2007 |
| 2        | 20 - <25                 | 9.8                      | 5.0 | 0.5  | 2007 |
| 2        | 25 - <30                 | 11.0                     | 5.0 | 0.5  | 2007 |
| 3        | >=30                     | NO <sub>x</sub> =<br>IMO | -   | -    | 2007 |



| Category | Swept volume / cyl.                     | NO <sub>x</sub> + HC | CO  | PM   | Year |
|----------|-----------------------------------------|----------------------|-----|------|------|
| 1        | <0.9 and >=75kW                         | 5.4                  | 5.0 | 0.14 | 2012 |
| 1        | 0.9 - <1.2                              | 5.4                  | 5.0 | 0.12 | 2013 |
| 1        | 1.2 - <2.5                              | 5.6                  | 5.0 | 0.11 | 2014 |
| 1        | 2.5-<3.5                                | 5.6                  | 5.0 | 0.11 | 2013 |
| 1        | 3. 5 - <7.0                             | 5.8                  | 5.0 | 0.11 | 2012 |
| 2        | 7.0 - <15                               | 6.2                  | 5.0 | 0.14 | 2013 |
| 2        | 15 - <20 and <3300kW                    | 7.0                  | 5.0 | 0.34 | 2014 |
| 2        | 15 - <20 and<br>>=3300kW and<br><3700kW | 7.0                  | 5.0 | 0.27 | 2014 |
| 2        | 20 - <25 and <3700kW                    | 9.8                  | 5.0 | 0.27 | 2014 |
| 2        | 25 - <30 and <3700kW                    | 11.0                 | 5.0 | 0.27 | 2014 |

<35>

#### **US EPA Tier 4**



#### Applicable for all (Category 1 and 2 engines) <30 liters/cyl.</p>

| Category        | Swept volume /<br>cyl. | NO <sub>x</sub> | HC   | CO  | РМ   | Year |
|-----------------|------------------------|-----------------|------|-----|------|------|
| 600<1400kW      | All                    | 1.8             | 0.19 | 5.0 | 0.04 | 2017 |
| 1400<2000k<br>W | All                    | 1.8             | 0.19 | 5.0 | 0.04 | 2016 |
| 2000<3700k<br>W | All                    | 1.8             | 0.19 | 5.0 | 0.04 | 2014 |
| >=3700kW        | <15                    | 1.8             | 0.19 | 5.0 | 0.12 | 2014 |
| >=3700kW        | 15 - <30               | 1.8             | 0.19 | 5.0 | 0.25 | 2014 |
| >=3700kW        | All                    | 1.8             | 0.19 | 5.0 | 0.06 | 2016 |

#### **The Diesel Dilemma**





# **IMO Tier II & III Consequences**



- Consequences Tier II
  - Required NO<sub>x</sub>-reduction achievable with internal measures
- Consequences Tier III
  - At present knowledge only with SCR achievable
  - Switch to low sulphur fuel required
  - Certain exhaust gas temperatures required for SCR operation
  - Alternatively Dual Fuel engine in gas mode



2009/06/22

# **Reduction technologies 4-stroke**





#### Working principle

| <ul> <li>Variation of changes in:</li> <li>Combustion Process</li> <li>Fuel Injection</li> <li>Turbo charging</li> <li>-&gt; NO<sub>x</sub>-optimized engine configuration</li> </ul> | Water from injected<br>emulsion evaporates<br>during combustion:<br>-> Reduced combustion<br>temp.<br>-> Improved fuel<br>spraying | Humidification of the<br>scavenge air increases<br>inert gas fraction/heat<br>capacity and lowers<br>oxygen content:<br>-> Slower combustion<br>-> Reduced combustion<br>temp. | Chemical reader<br>exhaust line:<br>-> Treatment<br>gas after eng | ctor in<br>of exhaust<br>ine | Imple<br>flexib<br>natura<br>->Clea<br>natura | mentation o<br>ility to burn<br>al gas or HF<br>an combust<br>al gas | of fuel<br>either<br>O:<br>ion of |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------|-----------------------------------------------|----------------------------------------------------------------------|-----------------------------------|
| MAN Diesel 13                                                                                                                                                                         | 3 <sup>th</sup> ETH-Conference on Combustior                                                                                       | n Generated Nanoparticles                                                                                                                                                      |                                                                   | © MAN Di                     | esel                                          | 2009/06/22                                                           | <39>                              |

# Potential of NO<sub>x</sub> Reduction Technologies





MAN Diesel

© MAN Diesel 2009/06/22 <40>