

Assessment of self-pollution of school buses with various retrofit technologies

 Harish C. Phuleria, ISPM, University of Basel, Basel, Switzerland Timothy Larson, University of Washington, Seattle, WA Barbara Zielinska, Desert Research Institute, Reno, NV Robert Ireson, Air Quality Management Consulting, Greenbrae, CA, Mark Davey, University of Washington, Seattle, WA
 Christopher Weaver, Engine Fuel & Emissions Engg. Inc., Rancho Cordova, CA John Ondov, University of Maryland, College Park, MD
 Thomas Hesterberg, International Truck & Engine Corp., Warrenville, IL
 L.-J. Sally Liu, ISPM, Univ. of Basel, Basel and Univ. of Washington, Seattle, WA

13th ETH Conference on Combustion Generated Nanoparticles, Zurich June 22-24, 2009

Background

- More than 24 Million children in USA commute by school buses every day
- Studies have shown adverse health effects of traffic exhaust exposure
- Elevated levels of PM_{2.5} and BC inside school buses in Connecticut (Wargo, '05), Los Angeles (Behrentz, '05; Sabin, '05) and Seattle (Adar, '08; Zielinska, '08)

Motivation

- Most diesel exhaust particles on buses are attributable to bus itself - self-pollution. (Fitz 03; Sabin 05)
- Ireson (2004) reported little self-pollution from the tailpipe
- UW's bus self-pollution (SP) study; in year 2005 with 2 Seattle buses without CCV (closed crankcase ventilation)
- Liu (2008) and Zielinska (2008) show crankcase contribution greater than tailpipe

Remaining Questions ??

- Can we generalize these results on bus selfpollution?
- Does CCV reduce the crankcase emissions effectively?
- Does DOC (diesel oxidation catalyst) help at all?
- What is the effect of windows open/ closed on bus self-pollution?

UNI BASEL

Bus selection

(Null, DOC, CCV, DOC+CCV)

Bus ID	DOC	ccv	Model year	Engine model	Engine location	Mileage
<u>Seattle</u>						
1DC	Y	Y	2002	T444E	F	42,492
1DX	Y	N	2002	T444E	F	42,492
2XC	N	Y	2002	T444E	F	49,550
2XX	N	Ν	2002	T444E	F	49,550
<u>Tahoma</u>						
5DC	Y	Y	1993	DT360	F	149,605
6DX [*]	Y	N [#]	1993	5.9L	R	168,000
7DX ^{**}	Y	N [#]	1993	DT360	F	144,201
8DC	Y	Y	1993	DT360	F	160,200
8DX	Y	N	1993	DT360	F	160,200

Donaldson CCV unit disconnected prior to the tests

* Strong odors reported coming from rear engine compartment into bus during operation

* Engine failure (turbo seals ??) during emission testing; testing aborted

Study design – In-cabin, Lead Vehicle and Source sampling

- A 3-week study (Aug 14-Sep 1, 2006)
- Sampling on 6 buses with total 9 configurations
- On bus: Collocated $PM_{2.5}$ samplers at 120 L/min, and PM_1 sampler at 16.7 L/min
- Simultaneous sampling of tailpipe and crankcase emissions using two parallel dilution tunnels in most runs
- On bus and Lead Vehicle: pDR, Ptrak and EcoChem

Sampling Schematic

Chemical Analysis

- PM_{2.5} Teflon filters: gravimetric and INAA for Iridium
- PM_{2.5} quartz filters: detailed organics
 - OC and EC using the TOR-IMPROVE protocol
 - Speciated organic analysis including dalkane (C₃₆D₇₄) with GC/MS
- PM₁ filters: gravimetric and XRF for trace elements

Estimating self-pollution using tracers

$$\begin{split} \mathsf{PM}_{2.5, \ \mathsf{SP}} &= \mathsf{PM}_{\mathsf{Tailpipe}} + \mathsf{PM}_{2.5, \ \mathsf{Crankcase}} \\ &= \mathsf{Ir}_{\mathsf{in-cabin}} \left(\mathsf{PM}_{\mathsf{TP}}/\mathsf{Ir}_{\mathsf{TP}}\right) + \\ &\quad \mathsf{d-alkane}_{\mathsf{in-cabin}} \left(\mathsf{PM}_{2.5, \ \mathsf{Ck}}/\mathsf{d-alkane}_{\mathsf{Ck}}\right) \end{split}$$

- Organo-metallic Ir complex added in diesel fuel as tracer for tailpipe emissions
- d- alkane (C₃₆D₇₄) added in lubricating oil as tracer for crankcase emissions

Institute of Social and Preventive Medicine

In-cabin total PM_{2.5}

Bus ID and configurations

Institute of Social and Preventive Medicine

In-cabin crankcase PM_{2.5}

Bus ID and configurations

Institute of Social and Preventive Medicine

In-cabin tailpipe PM_{2.5}

Institute of Social and Preventive Medicine

In-cabin OC conc.

Bus ID and configurations

Institute of Social and Preventive Medicine

In-cabin EC conc.

Bus ID and configurations

Comparisons with previous findings

_		This	Liu et al., 2008 Seattle		
Parameters	Seattle				Tahoma
_	No CCV	CCV	No CCV	CCV	No CCV
Windows closed					
SP (μg/m³)	8.2	1.0	7.2	1.0	14.0
% PMck/SP	94	25	63	18	88
% SP/PM2.5	24	5	13	4	48
Windows open					
SP (μg/m³)	3.9	0.3	0.5	0.4	1.9
% PMck/SP	82	7	40	6	66
% SP/PM2.5	14	1	2	2	20

- In our 2005 bus SP study (Liu, 2008), bus model year were 2002 and 1999
- Both had DOC and none CCV

Summary

- Self-pollution ranged 1-8.2 μg/m³ when windows closed ; 0.3-3.9 μg/m³ when windows open (wo)
- In-cabin PM_{2.5} and OC were higher when windows closed (wc)
- In newer (2002) buses, crankcase contribute 77 and 87% of SP (wo,wc), while ~30, 55% of SP (wo,wc) in older (1993) buses
- Crankcase $PM_{2.5} \sim 5-10$ times higher than tailpipe PM inside the bus
- Retrofit CCV control effectively reduced in-cabin PM_{2.5} and OC emissions; DOC did not
- In cabin PN track roadway levels very well and about 50% of roadway background (wc) and 70% (wo)

Acknowledgements

- National Institute of Environmental Health Sciences (NIEHS) (#1R01ES12657-01A1)
- Gift fund from the International Trucks and Engine Inc. to the University of Washington
- Department of Energy (DoE) office of FreedomCAR and Vehicle Technologies through the National Renewable Energy Lab (NREL)
- Puget Sound Clean Air Agency
- The Seattle School District and its Transportation
 Department