

Swiss Confederation

International comparisons of national standards for particle counting and sizing

13th ETH-Conference on Combustion Generated Nanoparticles, june 22nd to 14th 2009

Outline

Introduction Motivation – range of concentrations and sizes
National metrology Institutes (NMI) role – traceability
Project EURAMET 1027 scope – procedure – participants – instrumentation
EURAMET 1027 – Comparison aerosols – procedure – results number – results size
Summary and Outlook

Motivation for Metrology

ambient measurements

clean-room monitoring

emission measurements

human protection / security

Number concentration and size range

Examples of number concentrations:

Diesel exhaust fumes: 1 000 000 000 cm⁻³

Urban air: 1 000 000 cm⁻³

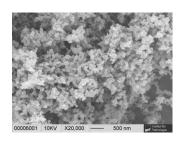
Rural air: 10 000 cm⁻³

Mountain air (Jungfraujoch): 100 cm⁻³

Clean room class 9 (> 0.5 μ m): 35 cm⁻³

Clean room class 6 (> 0.1 μ m): 1 cm⁻³

Examples of particle sizes:


Water molecule 0.1 nm

Viruses 1 nm – 5 nm

Tobacco and Engine smoke 10 nm – 1000 nm

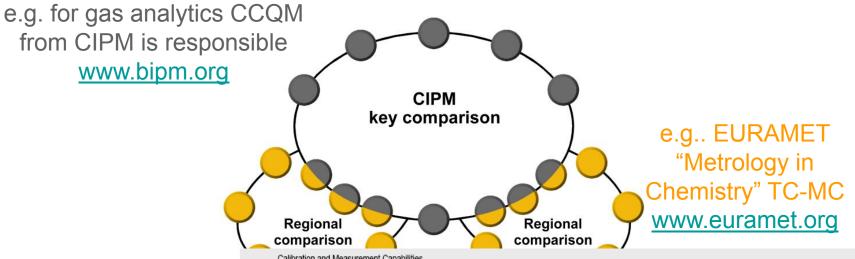
Bacteria $0.5 \mu m - 50 \mu m$

Coal dust $1 \mu m - 100 \mu m$

O

Role of a metrology institute (NMI)

NMI must cover the need for correct measurements:


- Trading units:

 Mass, electrical current, volume, length ...
- Public health of human, animals (production and wild) : contamination of food, air pollution, soil pollution, noise ...
- Public security:
 radioactivity, speed of cars, ...
- Administrative measures: Homologation of vehicles, exhaust measurements, ...

NMI may delegate the responsibility to a designated body.

Traceability on level of NMIs

Calibration and Measurement Capabilities

Amount of substance, gases, Switzerland, METAS (Federal Office of Metrology)

Note: No ranges of certified values in reference materials declared by Switzerland.

The notation Q[a, b] stands for the root-sum-square of the terms between brackets: Q[a, b] = $[a^2 + b^2]^{1/2}$

Process is necessary for declaration in **BIPM-database:** Calibration and measurement capabilities (CMC) http://kcdb.bipm.org/

NMI Ser	rvice Measurement	Matrix	Measurand		Dissemination Range of Measurement Capability								Mechanism(s) for	
Identifier	fier Service Sub- Category		Analyte or Component	Quantity	From	То	Unit	From	То	Unit	Coverage factor	Level of confidence	Is the expanded uncertainty a relative one?	Measurement Service Delivery
232-	-1 Environmental	nitrogen	carbon monoxide	Amount-of- substance fraction	40	200	µmol/m ol	0.8	0.8	%	2	95%	Yes	Calibration of gases
232-	-2 Environmental	nitrogen	carbon monoxide	Amount-of- substance fraction	1	50	mmol/ mol	0.4	0.4	%	2	95%	Yes	Calibration of gases
232-	-3 Environmental	nitrogen	carbon	Amount-of- substance	50	150	mmol/	0.4	0.4	%	2	95%	Yes	Calibration of

SIKCDB

V

Project EURAMET 1027 – framework

Goal:

- Degree of equivalence for particle number concentration of national standards
- Degree of equivalence for particle sizing (equivalent mobility diameter) of national standards
- Exchange of knowhow between NMIs
- Assessment of measurand (especially size distribution parameters) for future comparisons

Method:

- Experimental work
- Comparison with combustion aerosol (CAST): unimodal and quasi monodisperse particles
- Measurement at same moment the same aerosol

Project EURAMET 1027

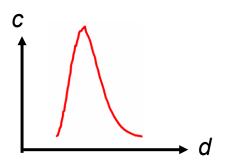
Participants

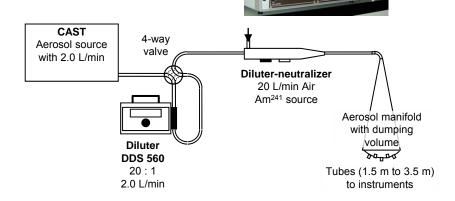
- AIST (JP)
- DFM (DK)
- FORCE (DK)
- METAS (CH)
- NPL (GB)
- UBA (DE)

Measurand

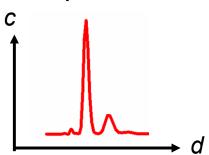
Number		
		Structure
	Size	
Number	Size	
Number	Size	
Number	Size	

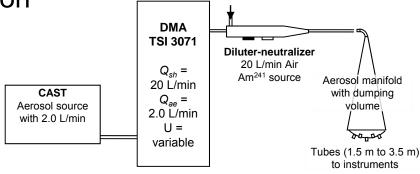
Instrument types


- Number: Condensation Particle Counter (CPC)
- Size: Scanning Mobility Particle Sizer (SMPS)
 - Electrical Low Pressure Impactor (ELPI)
- Structure: Atomic Force Microscope

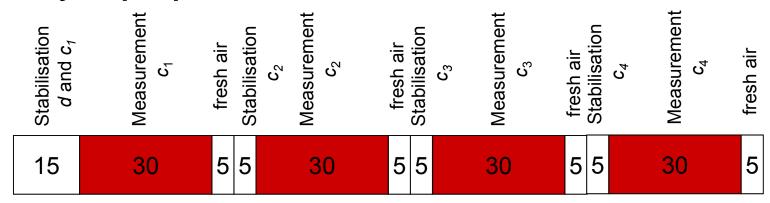


EURAMET 1027 – aerosol generation


Particle generation:


"natural" size distribution

monodisperse size distribution

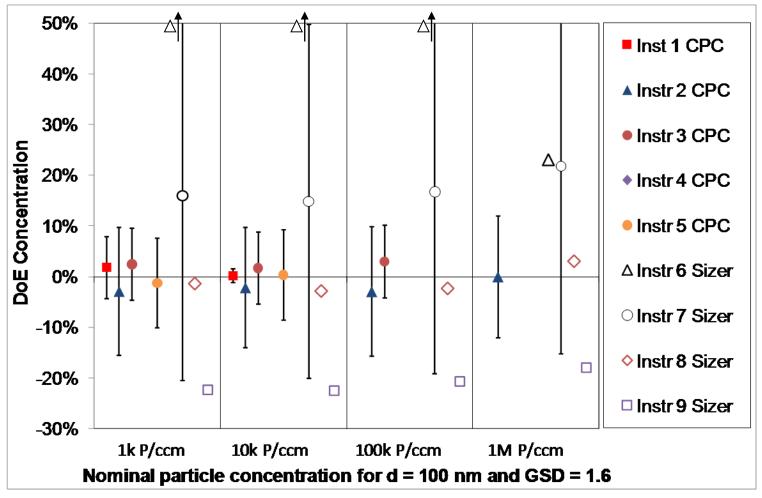


EURAMET 1027 – comparison routine

Particle number and concentrations

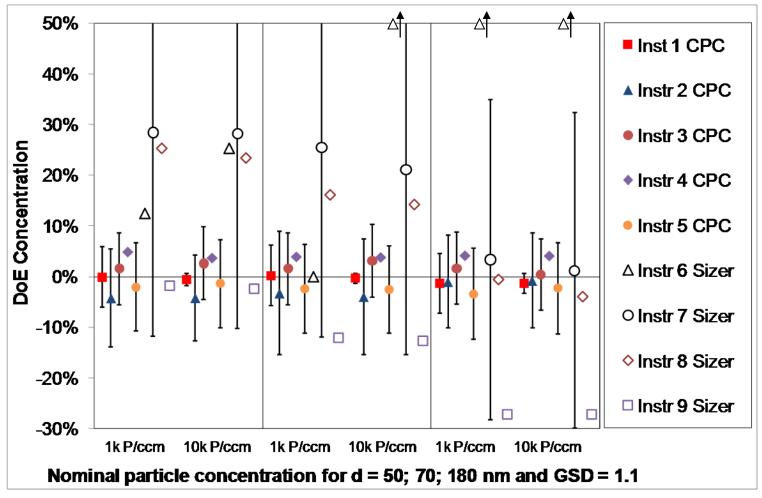
```
"natural" size distribution \sigma_g \approx 1.6 d_i: 70 ... 170 nm at c_i: 10^3 cm<sup>-3</sup> ... 10^6 cm<sup>-3</sup> "monodisperse" size distribution: \sigma_g < 1.1 d_i: 50 ... 180 nm at c_i: 10^3 cm<sup>-3</sup> and 10^4 cm<sup>-3</sup>
```

Cylce per particle size:



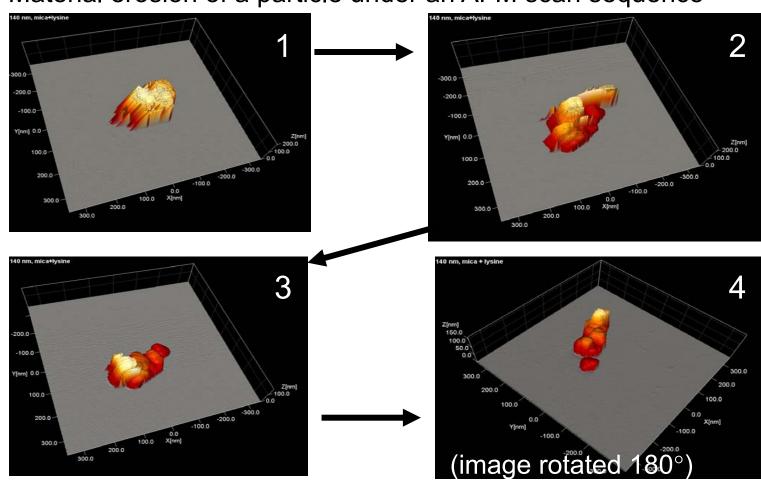
t/min

EURAMET 1027 - results 1/5


Number concentration – "natural" size distribution

EURAMET 1027 - results 2/5

Number concentration – "monodisperse" size distribution

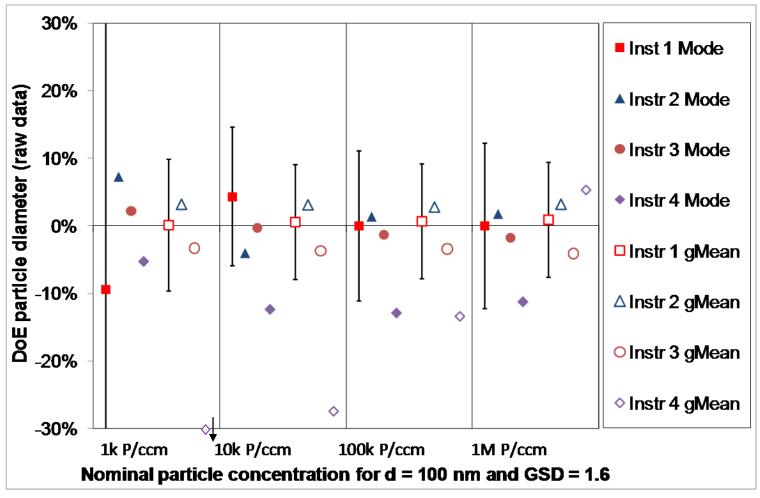


The bars indicate the uncertainties with k = 2

O

EURAMET 1027 – results 3/5

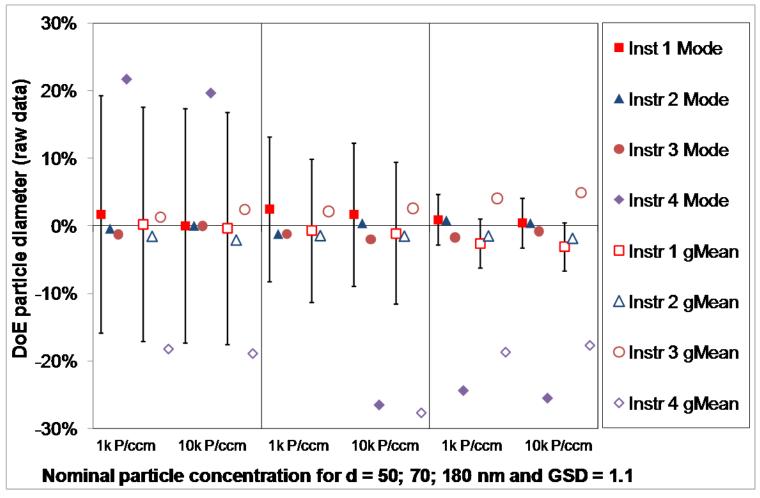
Material erosion of a particle under an AFM scan sequence



AFM pictures from DFM

EURAMET 1027 - results 4/5

Mode and geometric mean – "natural" size distribution


Diameter = Electrical Mobility ≠ Aerodynamic diameter

The bars indicate the uncertainties with k = 2

EURAMET 1027 - results 5/5

Mode and geometric mean – "monodisperse" size distribution

Diameter = Electrical Mobility ≠ Aerodynamic diameter

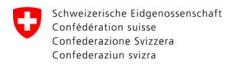
The bars indicate the uncertainties with k = 2

O

EURAMET 1027 – Summary

National standards for particle number concentration and particle size measurement have been established in NMIs.

Particle number concentrations:


- Equivalence of particle counters within stated uncertainties
- Equivalence of particle counters normally within ± 5 %
- Equivalence of particle sizers much better
- Lack of uncertainty statement for sizers

Particle size distributions (electrical Mobility):

- Equivalence of particle counters within stated uncertainties
- Equivalence for Mode and Geo. Mean within ± 5 %
- Equivalence of particle sizers much better
- Lack of uncertainty statement for sizers

Outlook

☐ Particle number concentration and particle size become important quantities in environmental protection and occupational safety. ■ With EURAMET 1027 collaboration of NMIs has started; project supports future national initiatives. ☐ Equivalence is proved for "well-behaved" particles; NMI are willing to take over the responsibility to establish the reference for particle measurements. ☐ Further discussion is needed on: cropped size distributions, distribution parameters, size distributions curve fitting, uncertainty. ☐ Further work needed to enlarge size range

Swiss Confederation

Thank you

AIST Hiromu Sakurai
DFM Kai Discherl
FORCE Karsten Fuglsang
NPL Jordan Tompkins, Richard Gilham
UBA Klaus Wirtz

juerg.schlatter@metas.ch www.metas.ch/aerosol