## HelmholtzZentrum münchen

German Research Center for Environmental Health

iLBD Institute of Lung Biology and Disease



# Deducing the inflammatory in vivo toxicity of combustion derived nanoparticles from in vitro data

13th ETH Conference on Combustion Generated Nanoparticles - Session 5B: Health Effects Zürich, 23/06/2009

T. Stoeger, O. Schmid, D. Dittberner, S. Takenaka, H. Schulz



Comprehensive Pneumology Center



## Particle Toxicity: Where does it come from?



Nanoparticle Parameters Relevant to Health:

| Solubility                       | Chemical Composition                  |  |
|----------------------------------|---------------------------------------|--|
|                                  | - Organic Compounds (PAH, Quinones)   |  |
| Particle Size / Shape / Rigidity | - Metals (Iron, Zinc, Copper,)        |  |
|                                  |                                       |  |
| Particle Concentration (Dose)    | Particle Reactivity                   |  |
| - Mass                           | - Bioavailability of NPs & Substances |  |
| - Number                         | - Surface Structure/Morphology        |  |
| - Surface Area                   | - Generation/Release of Radicals      |  |



Dose Response Relations (Animal Studies)

Summary of 7 studies that analyzed the acute pulmonary response [%PMN] 24h after particle instillation in mice and rats



### **Dose Metric: Mass**

| Particle Mass / | g-Lung* | [µg/g] |
|-----------------|---------|--------|
|-----------------|---------|--------|

|         | Reference        | Particle         | Size Range<br>[nm] |      |
|---------|------------------|------------------|--------------------|------|
| rene    | Oberdörster-2005 | TiO <sub>2</sub> | 20-250             | в    |
|         | Stoeger-2006     | CNP-lowOC        | 9-50               | ouse |
|         | Stoeger-2006     | CNP-highOC       | 12-25              |      |
| luartz  | Brown-2001       | Polystyrene      | 65-535             |      |
| wOC     | Dick-2003        | Carbon Black     | 14                 |      |
|         | Dick-2003        | TiO <sub>2</sub> | 20                 |      |
| ghOC    | Höhr-2002        | TiO <sub>2</sub> | 25-180             | rat  |
| n Black | Oberdörster-2005 | TiO <sub>2</sub> | 20-250             |      |
|         | Warheit-2006     | TiO <sub>2</sub> | 300                |      |
|         | Warheit-2007     | Quarz (Nano)     | 12-50              |      |

Dosmetric **mass** explains *"only"* about 50% of response variability

Back -Ground

PMN [%]



## **Dose Response Relations** (Animal Studies) Ground

Summary of 7 studies that analyzed the acute pulmonary response [%PMN] 24h after particle instillation in mice and rats



### **Dose Metric: Particle Number**

Stoeger in preparation



HelmholtzZentrum münchen German Research Center for Environmental Health

Back -

## Dose Response Relations (Animal Studies)

Summary of 7 studies that analyzed the acute pulmonary response [%PMN] 24h after particle instillation in mice and rats



### **Dose Metric: Particle Surface Area**

Particle Surface Area / g-Lung\* [cm<sup>2</sup>/g]

 $\Rightarrow$  Particle Surface Drives Particle Toxicity!

Stoeger in preparation

ASSOCIATION



Back -Ground

## Partice Toxicity According to the Oxidative Stress Paradigm



? Can we differentiate sources of oxidative stress / inflammation?

## **Investigated Carbonaceous Nanoparticles**





## **Investigated Carbonaceous Nanoparticles**



ASSOCIATION

German Research Center for Environmental Health

# How to Assess the 'Oxidative Reactivity' of Nanoparticles?

**Oxidative potency of NPs assessed in a <u>cell free system</u>:** Consumption of the anti-oxidative capacity of *ascorbate* as a measure for the oxidative reactivity.





## **Oxidative Potency of the Six Carbon Nanoparticles**

Particles Differ in Their Oxidative Reactivity / Potency

Cell Free Assay: "Oxidative Effect"

<u>Result from Animal Exposure:</u> "Inflammatory Effect" inflammatory efficacy (dose per 20%PMN)





## 'Oxidative Potency' and 'Inflammatory Efficacy' of NPs as Function of BET Surface Area



LMHOLTZ

ASSOCIATION



# Can 'Oxidative Potency' Predict the 'Inflammatory Efficacy' of Nanoparticles?





## Bioavaliability of Organic Compounds Investigated by Gene Expression Analysis



A. Stress response and inflammation

Cyp1a1 expression matches well with the "Oxidative Potency vers. Inflammatory Efficacy" discrepancy



# PAH-rich SootH but not SootL induced CYP1A1 Expression in Lungs of instilled mice => Biomarker



### **Protein Expression (Western Blot)**

### Immunohistochemistry of Lungs (S. Takenaka)



SootL

<u>20 µm</u> Ф.М.

#### SootH

→ CYP1A1 expressing alv. epithelial cells

Stoeger et al. 2009



## Pathways that Contribute to the Particle Induced Inflammatory Response





## Quantitative Model for Inflammatory Efficacy: A Two Pathway Concept

**Oxidative Potency = Surface Reactivity Only:** 





## Relative Contribution of 'Oxidative Potency' or '*Cyp1a1*-Pathway' to Particle Toxicity

### **Two Parameter Model**

Inflammatory Toxicity as a Product of: Surface Reactivity + Metabolic Activation



Stoeger et al. 2009



### **Contribution to Inflammatory Efficacy**



Stoeger unpublished



### Can we Predict the Toxicity from In Vitro Data Only?

=> Find Cell Line with Lung-Like Cyp1a1 Inducibility





Stoeger unpublished





## *Conclusions for Combustion Derived Nanoparticles:*

- > Major contribution of 'Surface toxicity' to total particle toxicity
- Toxicity of combustion derived nanoparticles is not necessarily depending on organic contribution (bioavailability / bioactivity of OC?)

SootL (7% OC) even exceeds inflammatory efficacy of SootH (19% OC)

⇒ Impact on toxicity of modern DEP! (low OC, high Ox<sub>Pot</sub>? Su et al. (Environ. Sci. Technol.) 2008: EuroIV-DEP more toxic than BS-DEP

- Toxicity or 'Inflammatory Efficacy' can be predicted by a two parameter, in vitro model that involves:
  - 1. Oxidative potency (cell free assay)
  - 2. Induction of Cyp1a1 gene expression (cell based in vitro assay)



## **Thank You For Your Attention**

&

## Thanks to:

### my colleagues at the Institute of Lung Biology and Disease (iBLD)



... Shinji Takenaka, Otmar Schmid, Daniela Dittberner, Bärbel Ritter, Birgit Frankenberger, Ewin Karg, <u>Holger Schulz</u> ...

