Online Determination of "Aircraft Engine Nanoparticle Emission Indices" at Zurich Airport, Switzerland

C. Wahl^{*}, Th. Rindlisbacher[#], M. Kapernaum^{*}

* Institute of Combustion Technology, (German Aerospace Center, DLR – Stuttgart)

[#] Federal Office for Civil Aviation, (FOCA-Bern, Switzerland)

In a cooperation of German Aerospace Center (DLR - Stuttgart), Federal Office for Civil Aviation (FOCA – Bern, Switzerland) and Unique Flughafen Zürich AG, we did nanoparticle measurements at Zurich airport. The test equipment was positioned close to the taxiway of runway 16. If winds are from west (which is often the case), the exhaust gases of passing aircrafts are transported by wind drift to our equipment. Because of high dilution of the exhaust gases with ambient air and the transient events we used fast and sensitive devices like Engine Exhaust Particle Sizer (EEPS) and a NDIR CO₂ photometer. The size range of the EEPS is 5.6 nm to 560 nm and time resolution is 10 Hz. Time resolution of the NDIR CO₂ photometer is 1 Hz.

The so called particle Emission Index (EI _{PM}) gives the mass of nanoparticles formed during combustion of 1 kg fuel. EI _{PM mass} = mg _{particles} / kg _{fuel}. The Emission Index is a clear indicator for the quality of a combustion process! To determine an Emission Index by CO₂ concentration measurement, it is necessary to know the carbon mass content of the fuel. The fuel normally used in civil passenger aircrafts is kerosene called JET-A1. Due to the strict specifications, the mass ratio of carbon to hydrogen is nearly constant. Therefore, burning of 1 kg of Jet-A1 forms always 3.16 kg of CO₂ (+- 3%). To determine an EI _{PM}, it is necessary to measure the CO₂ concentration and particle concentration in parallel. Under stationary conditions this is normally no problem. In our case of highly transient events, both instruments must be fast enough to detect the maximum of the peaks. The Emission Indices can be calculated independent from exhaust gas dilution. It is assumed that CO₂ and particles are diluted always by the same factor.

The aerosol background at Zurich airport is very low. Therefore for nearly all passing aircrafts the corresponding particle cloud could be identified. (The nose is also a good detector. Whenever we smelled exhaust gas, we also had clear signals in CO₂ and particles.)

We calculated Emission Indices for particle mass as well as for particle number. The measured range of values is

 $EI_{particle mass} = 53 - 214 \text{ mg}_{PM} / \text{kg}_{fuel}$ $EI_{particle \#} = 1.5 - 4.7 E16 \# / \text{kg}_{fuel}$

The geometric mean diameter measured is in the range of 9.4 to 13.5 nm, which is less than normally found at engine test rig measurements. The reason here may be the direct exhaust dilution with bypass- and fan air at engine exit.

(At rig tests, dilution is normally done at the end of the sampling line. Agglomeration takes place in the sampling line, due to high particle concentration.)

Within the "International Civil Aviation Organization (ICAO)" there is a working group called "Committee on Aviation Environmental Protection (CAEP)". This CAEP committee developed a "First Order Approximation (FOA3)" for particle mass

estimation (volatile + nonvolatile). For this PM Estimation method, values from the ICAO engine database are used (Smoke Number, UHC, Sulfur Conversion Factor, AFR,). Using the FOA3 method, the calculated range of values is

 $EI_{PM FOA3} = 54 \text{ to } 248 \text{ mg}_{PM} / \text{kg}_{\text{fuel}}$

It should be mentioned that the engine power setting at "ICAO Taxi" is 7% of the maximum engine thrust. The real "Taxi" power setting in our measurements at Zurich is about 4% of maximum thrust.

Assignment of engine types to measured aircraft can be done on the basis of publicly available data. Our method is a simple technique to determine El's for the actual aircraft engine fleet.

The method should also work on streets with low "car frequency" to get EI's for the actual car fleet.

The authors want to thank Peter Frei and Emanuel Fleuti of UNIQUE Flughafen Zürich AG for making this measurements possible.

Please do not use this results out of the context of this presentation, due to the big error bars in CO_2 measurements (+- 20%) and the mentioned limitations.

Institute of **Combustion Technology**

Aircraft Engine Nanoparticle Emission Indices, Measurements at Zurich Airport, Switzerland

Claus Wahl*, Manfred Kapernaum* * German Aerospace Center, DLR Stuttgart, Germany **Theo Rindlisbacher**[#], *#FOCA – Federal Office for Civil Aviation, Bern, Switzerland*

Emission Index EI = mg pollutant / kg burned fuel

Online EEPS Particle Measurement

HB-xxx SWISS A321	measured values
	$# = 3,18e6/ \text{ cm}^3$
SHISS - / S DA	mass = 11,5 µg / m ³
	d = 13,5 nm
	CO ₂ = 120 ppm
она на 1900м.	
HB-xxx SWISS A332	$# = 3,41e6/ \text{ cm}^3$
A transfer of the	mass = 6,3 μ g / m ³
	d = 9,8 nm
	CO ₂ = 193 ppm

CFM56-5B1/2P DAC	EI PM = 154mg	EI# = 4,3e16
PW4168A	El PM = 53 mg	EI# = 2,84e16

Online CO₂ Measurement

ppm CO₂

Highest measured values:				
UR-xxx Ukraine International B737-500	CFM56-3C-1	El PM = 165 mg	El# = 4,7 e16	
D-xxxx STAR ALLIANCE Fokker 100	TAY MK650-15	El PM = 214 mg	El# = 3,1 e16	
Outlook: - CO ₂ measurements will be improved (5,11m FT-IR instead of 10 cm ND-IR) - distinction between volatile and nonvolatile particles - next measurements planned in July 2009				
Deutsches Zentrum für Luft- und Raumfahrt e.V.	Acknowledgement: Special thanks to Peter Frei	i and Emanuel Fleuti of L	Jnique (Flughafer	

in der Helmholtz-Gemeinschaft

13th ETH Conference on Combustion Generated Nanoparticles, Zürich 22nd – 24nd June 2009

Zürich AG) for their organizational support.

Dr. Claus Wahl	Theo Rindlisbacher
Institute of Combustion Technology	FOCA Federal Office for Civil Aviation
Pfaffenwaldring 38 – 40	Mühlestrasse 2
D – 70569 Stuttgart	CH- 3003 Bern / Ittingen
Claus.wahl@dlr.de	Theo.Rindlisbacher@bazl.admin.ch