

Materials Science & Technolog y

Placenta Perfusion System: a Human ex vivo Model System to Study the Maternal – Fetal Barrier Capacity for Nanosized Materials

Dr. Peter Wick

13th ETH Conference on Combustion Generated Nanoparticles June 22 -24, 2009

Exposure to NP

- wood fire
- volcano

. . .

- combustion derived (e.g. diesel exhaust)
- engineered particles
- medical applications (injected) SPIONs
 Imaging agents
 NP drug delivery systems
 NP vaccines

Aim of the study

- Determination of the barrier capacity of placental tissue for nanoparticles (model particles: fluorescent polystyrene)
- Localization of the PS beads
- Analysis of histological and ultra structural changes of the tissue after perfusion
- Determination of the influence on viability and functionality of placental tissue after perfusion

Function and physiology of the human Placenta

function:

- exchange of oxygen / carbon dioxide
- exchange of nutrients and waste products
- exchange surface 5 12 m²
- separating the two individual blood systems
- suppression of rejection

Function and physiology of the human Placenta

physiology:

- placenta is an embryonic tissue
- maternal blood flow open circuit
- unique for humans
- animal model such as mice and rats not comparable with human placenta
- four types of transport across placenta
 - diffusion
 - active transport
 - biotransformation through metabolic enzymes
 - phago- and pinocytosis

Placental morphology before perfusion

endothelial cell fetal capillary Hofbauer cell intervillous space **mEC** maternal erythrocyte syncytiothrophoblast stroma of the villus

EMPA

Hämalaun / Eosin staining

Re-circulating placenta perfusion model

Human placenta shortly after delivery

Master Thesis C. Obrist, 2007

Fetal surface with umbilical cord

Maternal surface with decidua basalis

Intact placenta were obtained from uncomplicated term pregnancies either after vaginal or cesarean delivery and has to be cannulated within minutes

Work procedure for placenta perfusion assay

Quality criteria for a successful perfusion

Visual control:

intact membranes, no lesions, no disruption of the placenta **Measurable control:**

Leakage of fetal circuit < 4 ml / h ¹⁴C-antipyrine values

Fluorescent PS beads used for perfusion assay

Scale bar 200nm

Advantages:

- easy to detect (detection limit ~1 µg / ml with ELISA plate reader)
- spherical, reduced agglomeration
- known as biocompatible
- uncharged
- commercially available in different sizes
- used: 50, 80, 240 and 500 nm

Perfusion data of 80 nm polystyrene beads

Perfusion data of 500 nm polystyrene beads

Barrier capacity of the placenta is size dependent

(at least n=4; mean \pm S.E.M.)

Intervillious space (maternal side)

Materials Science & Technology

In syncytiothrophoblast

Materials Science & Technology

Stroma, PS bead crossed syncytiotrophoblast (1st barrier)

Fibroblast or cytothrophoblast, close to fetal capillary

Detection of PS beads in fetal circuit

Viability and functionality of the placenta after perfusion

0

ctrl

50 nm

80 nm

240 nm

500 nm

Neither the viability (glucose consumption / lactate production) nor the function of the placenta (hCG / leptin) were affected after the perfusion with polystyrene beads. (at least n=4; mean \pm S.E.M.)

Summary

- Placenta ex vivo model useful for (nano-) toxicological as well as pharmacological studies
- Polystyrene beads < 240 nm were able to cross placenta</p>
- Polystyrene beads found in syncytiothrophoblast, stroma and detected in the fetal circuit
- No morphological changes in placenta tissue observed after perfusion of PS beads
- Viability and functionality of placenta was not affected after perfusion
- This suggests that most nanomaterials have the potential for transplacental transfer and underlines the need for further nanotoxicological studies on this important organ system.

L. Belyanskaya P. Spohn S. Weigel

University of Cambridge Prof. Dr. J. Robertson and team

ETH Zurich Prof. Dr. W. Stark Karolinska Institute Sweden

Prof. Dr. B. Fadeel and team

University Hospital Zurich Prof U. von Mandach Dr. A. Malek

Material characterization prior to use!

Contamination of smaller (around 250 nm) polystyrene beads within the 500 nm beads

Placental morphology after 6h perfusion with 240 nm beads

Hämalaun / Eosin staining

Fluorescence microscopy

Hofbaur cell (macrophage) in Stroma

Materials Science & Technology

Placenta cotyledon after 6h of perfusion

