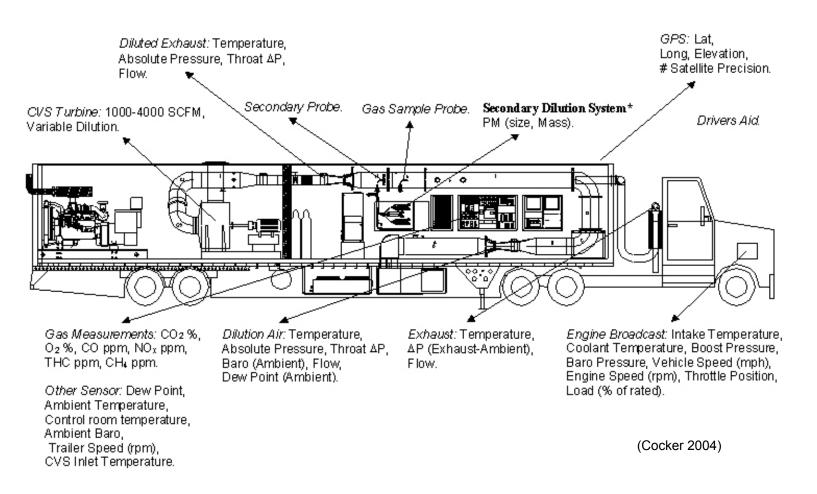


Background and Motivation

- The dispute on the Not-To-Exceed (NTE) standard
- Heavy-Duty In-Use NTE testing (HDUIT)
 - => In use, on-road test run by manufacturer
- PEMS (Portable Emissions Measurement Systems) for criteria pollutants
- CE-CERT/UCR was selected to the project which provides accuracy of PEMS measurement under in-use condition and basis to the development of Measurement Allowance program for both and gaseous and PM measurement.


Outline

- UCR's In-Use PEMS Evaluation Platform and It's Development
- Gaseous PEMS Lessons Learned
- PM PEMS Lessons Learned
- Conclusion

PEMS Comparisons Were Made a CFR Reference Mobile Emissions Laboratory (MEL)

MEL Accuracy Was Verified and Accepted by Industry and Regulators

- MEL passed a complete system audit
- Less than 2% instrument drift for MEL during in-use audits
 - 0 8,000 ft elevation
 - Wide Temp and RH
 - Shock, Vibration
- Correlation With SwRI Laboratory
 - NO_x and CO₂ 2% accuracy 1% COV
 - PM 5% accuracy 2% COV

 Other correlations were also performed at CARB and the National Renewable Emissions Laboratory (NREL)

www.cert.ucr.edu

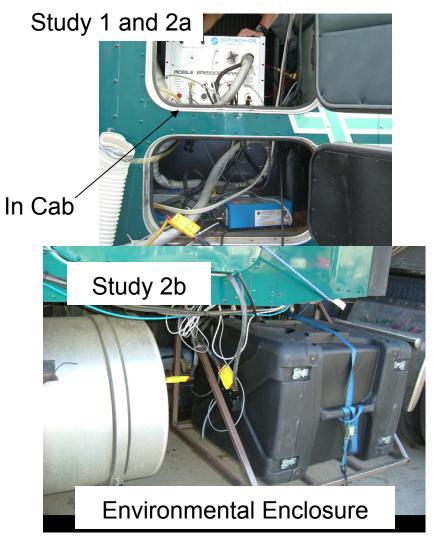
The Routes Were Designed to Cover a Range of Temperature, Humidity and Elevation

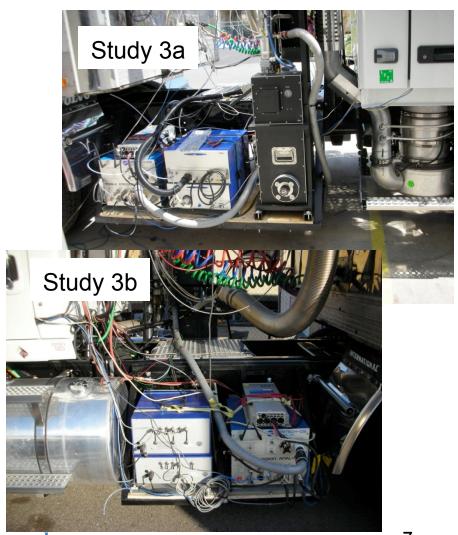
Test 1*, 2a**, and 2b** Caterpiller

Route	Temperature (F)	Humidty (RH %)	Elevation (Ft)	
1	45 - 90	5 - 40%	1000 to 5500	
3	65 - 85	30 - 80%	0 to 2000	

^{*} only part of route one was used

Test 3a and 3b Cummins and Volvo


Route	Temperature (F)	Humidty (RH %)	Elevation (Ft)					
			1000 to					
1	50 - 80	10 - 30%	4500					
2	50 - 80	10 - 30%	0 to 3000					
3	50 - 75	20 - 40%	0 to 2000					
			1000 to					
4	50 - 75	20 - 30%	2000					


^{**}extended range to 5500 feet

Several PEMS Mounting Options Were Investigated

In-Use Gaseous PEMS Test Matrix

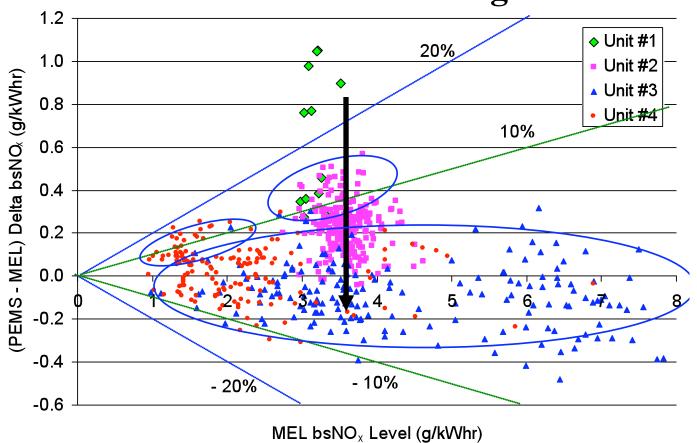
Test	Test	PEMS2	PEMS2			NO _x Level		Effort # NTE
Setup	Days	Year	Location	Engine	Aftertreatment	g/hp-h	Notes	Points
				2000;				
		ID#1		Caterpillar		3.0 - 3.5		
Test 1	1	2003	In Cab	C15	none	(1%NO2)	OEM	12
				2000 [;]				
		ID#2		Caterpillar	DOC passive	2.5 - 4.5		
Test 2a	3	2005	In Cab	C15	DPF	(30%NO2)	OEM	129
				2005				
		ID#2	Enclosure	Caterpillar	DOC passive	2.5 - 4.5		
Test 2b	3	2005	On Frame	C15	DPF	(30%NO2)	OEM	139
				2007				
		ID#3		Cummins		0.7 - 6	Regen	
Test 3a	4	2007	On Frame	ISX 450	OEM DPF	(40%NO2)	ECM Mods	175
		ID#4		2007 Volvo		0.7 - 6	Regen/ECM Mods	
Test 3b	4	2007	On Frame	D13	OEM DPF	(40%NO2)	Bypass	153

Acronyms

PEMS
 Portable Emission Measurement System, Semtech DS

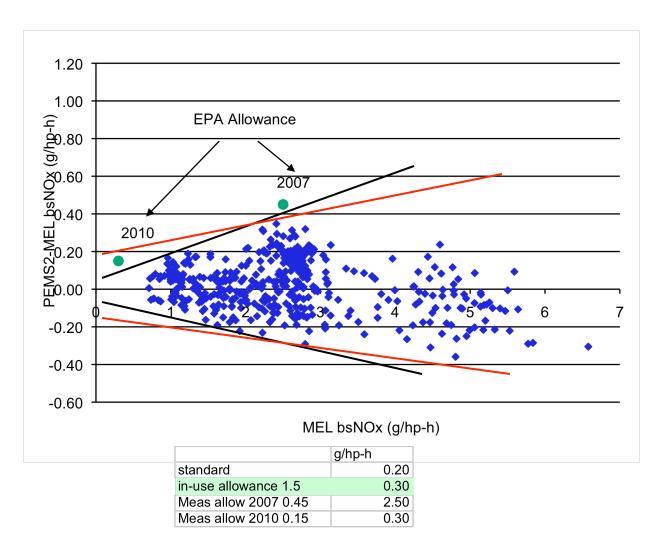
OEM Original Equipment Manufacture

DPF Diesel Particulate FilterDOC Diesel Oxidation Catalyst


Regen Forced regenerations with OEM tools

ECM Mods
 Bypass
 Recalibrated ECM to change NO_x emissions levels
 Added tubing to bypass the OEM after treatment system

NO_x Measurements Appear to Have Improved at Around the 3.5 g/kW-h level



- 1) $bsNO_x$ dropped for Unit #3 to < 10% for all points
- 2) Unit #3 and #4 spread due to ECM mods
- 3) Unit #4 shows at low level the $bsNO_x$ deltas exceed 10%

Combined PEMS Deltas vs NO_x Uncertainty for 2010

1) Will PEMS be able to quantify 2010 NO_x certification standards?

It depends!
We need data at low
NOx condition.

2) What if one uses MEL Instead of PEMS?

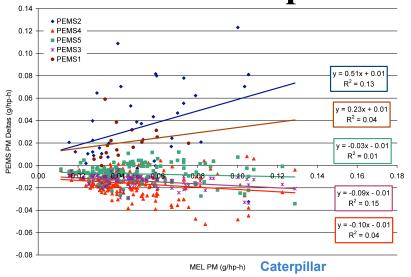
Yes, it will be better. The trade-off needs to be thought.

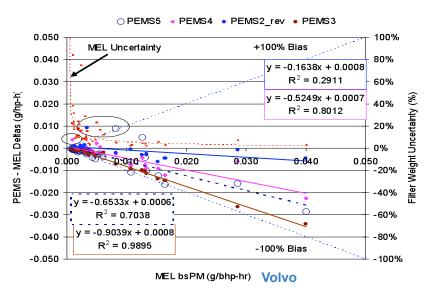
In-Use PM PEMS Test Matrix

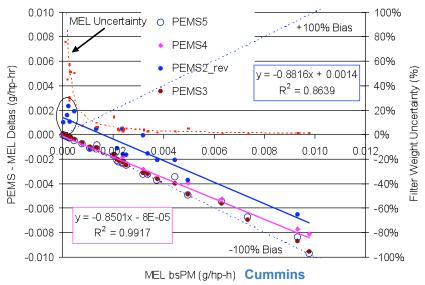
Test Count	Test Days		ampled CVS Diluted ments Instruments			Engine	Nominal PM g/hp-h	Notes	Total Filters
						2000			
						Caterpillar			
Test 1	4	PEMS1	PEMS3a	PEMS4	PEMS5	C15	0.05	OEM	70
						2000			
						Caterpillar			
Test 2	6	PEMS2a	PEMS3a	PEMS4	PEMS5	C15	0.05	OEM	96
						2007 DPF			
						Cummins		Regen	
Test 3	4	PEMS2b	PEMS3b	PEMS4	PEMS5	ISX 450	<0.01	ECM Mods	28
						2007 DPF		Regen/ECM	
Test 4	4	PEMS2c	PEMS3c	PEMS4	PEMS5	Volvo D13	<0.01	Mods Bypass	39

Acronyms

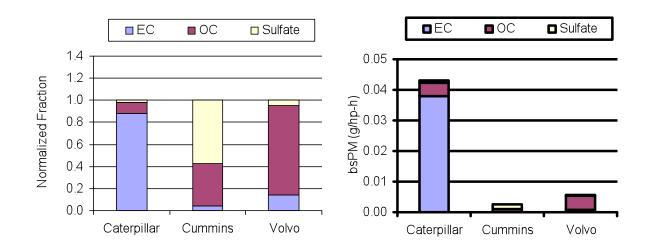
OEM
 DPF
 Regen
 Original Equipment Manufacture
 Wall flow diesel particulate filter
 Forced regenerations with OEM tools


ECM Mods Recalibrated ECM to change emissions levels

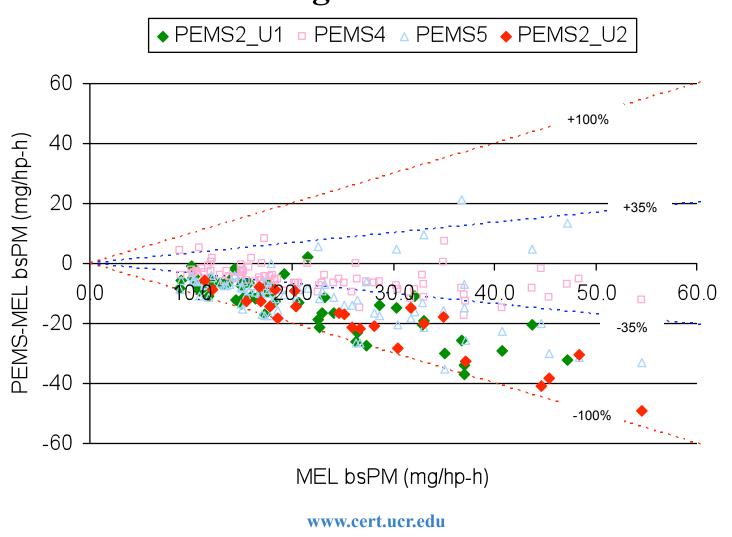

Bypass Added tubing to bypass the OEM after treatment system



PM PEMS Measurements Vary by Level, Composition, and Particle Size



	Cater	pillar	Vo	lvo	Cummins	
PEMS	Slope	R ²	Slope	R ²	Slope	R ²
1	1.23	0.55				
2	1.50	0.50	0.84	0.90	0.12	0.10
3	0.91	0.95	0.10	0.50	0.04	0.40
4	0.90	0.77	0.50	0.80	0.15	0.80
5	0.97	0.88	0.35	0.40	0.07	0.40



(a) (b) Figure 4-24 Normalized PM fractions (a) and bsPM fractions (b) for all test engines

Measurement Allowance PM PEMS Significant Negative Bias

Conclusions

- An in-use verification method was developed for gaseous and PM PEMS
- In-use gaseous PEMS for 2010 on-highway NOx certification standards is questionable. We need data at the low NOx level to be more conclusive.
- There are significant differences between gravimetric MEL PM mass vs PM PEMS measurement for DPF out PM emission.
- Inferred gravimetric PM PEMS are reliable for in-use engine out emission measurements.

Thanks!

CE-CERT PEMS reference list

- Johnson K.C., Durbin T.D., Cocker III D.R., Miller W.J., Bishnu D.K., Maldonado H. (2009) Quantifying In-Use PM Measurements for Heavy Duty Diesel Vehicles, Environ. Sci. Technol., inpreparation, 2009
- Johnson K.C., Durbin T.D., Cocker III D.R., Miller W.J., Bishnu D.K., Maldonado H. Moynahan N, Ensfield C., Laroo C.A. (2009) On-Road Comparison of a Portable Emission Measurement System with a Mobile Reference Laboratory for a Heavy Duty Diesel Vehicle, Atmospheric And Environment, Atmospheric and Environment, 2009
- Johnson K.C., Durbin T.D., Cocker III D.R., Miller J.W., (2008) On-Road Evaluation of a PEMS for Measuring Gaseous In-Use Emissions from a Heavy-Duty Diesel Vehicle, SAE Paper Number 2008-01-1300
- Durbin T.D., Johnson K.C., Cocker D.R., and Miller J.W., (2007) Evaluation and Comparison of Portable Emissions Measurement Systems and Federal Reference Methods for Emissions from a Back-Up Generator and a Diesel Truck Operated on a Chassis Dynamometer: Environ. Sci. Technol., Vol 41, p. 6199-6204.
- Cocker, D.R. III, Shah, S.D., Johnson, K., Miller, J.W., and Norbeck, J.M., (2004a). "Development and Application of a Mobile Laboratory for Measuring Emissions from Diesel Engines. 1. Regulated Gaseous Emissions" Environ. Sci. Technol., Vol. 38, p. 2182-2189.
- Cocker, D.R. III, Shah, S.D., Johnson, K., Zhu, X., Miller, J.W., and Norbeck, J.M., (2004b).
 "Development and Application of a Mobile Laboratory for Measuring Emissions from Diesel Engines.
 Sampling for Toxics and Particulate Matter" Environ. Sci. Technol., Vol. 38, p. 6809-6816.