

In-Use NTE PM Measurement Methodology using an In-Line, Real-Time Exhaust PM Emissions Sensor

Marc C. Besch¹, Arvind Thiruvengadam¹, Hemanth Kappanna¹, Alessandro Cozzolini¹, Peter Bonsack¹, Daniel K. Carder¹, Juha Tikkanen², <u>Mridul Gautam</u>¹

Department of Mechanical and Aerospace Engineering
West Virginia University

¹Pegasor Ltd, Tampere, Finland

Content

- Particle Sensor Technology
- NTE Measurement Methodology
- Experimental Setup
- Results and Discussion
 - ➤ Engine Dynamometer Results
 - ➤ Chassis Dynamometer Results
 - ➤ (On-Road Testing Results)
- Conclusions

Introduction

- In-use Emissions Compliance Measurements/Testing:
 - Quantification of PM mass emitted during Not-to-Exceed (NTE) events
 - Establishing mass reference for aerosol in real-time
- Other Fields of Application
 - On-board Diagnostics Applications
 - PM Sensor for Development and Implementation of DPF Regeneration Strategies
 - Combustion Research and Engine Base Calibration Applications

Engine lug-curve form Mack MP7 - 355E (MY 2004)

Sensor - Description of Technology

Measurement based on escaping current principle

PPS Installation on Exhaust:

Picture provided by Pegasor Oy

Advantages:

- Real-time
- Continuous operation
- No PM sample collection
- No external dilution of exhaust needed

Operational Parameters:

- Sampling rate up to 100 Hz
- Sensor output can be calibrated to [mg/m³] or [#/m³]

NTE In-use Measurement Method

Calculation of PM mass [mg] during NTE event:

$$PM_{Mass\ NTE} = PM_{Ratio\ PPS} \cdot PM_{Mass\ Total-Cycle}$$

PM_{Mass Total-Cycle} = TPM from gravimetric filter sample

Experimental Setup

Engine Dynamometer:

- Full flow dilution tunnel (CVS-SSV)
- 11L Mack MP7 355E (2004)
- No aftertreatment system
- EEPS (TSI, Model 3090)
- CPC (TSI, Model 3025)
- MSS (AVL, Model 483)
- Intake Air Flow Measurement
- Proportional Flow TPM Sampling

Chassis Dynamometer:

- Full flow dilution tunnel (CVS-SSV)
- 6.6L Duramax GMC4500 (2004)
- GVW ~ 12'000 pounds
- Diesel Oxidation Catalyst (DOC)
- Exhaust Flow Measurement
- Horiba OBS and Sensors SEMTECH
- Proportional Flow TPM Sampling

On-Road Testing:

- 6.6L Duramax GMC4500 (2004)
- GVW ~ 12'500 pounds
- Diesel Oxidation Catalyst (DOC)
- Exhaust Flow Measurement
- Horiba OBS and Sensors SEMTECH
- Constant Flow TPM Sampling

Setup - Engine Test Cell/Chassis Dynamometer

Setup - On-Road Testing

Porous Wall Dilutor

$$C_{Filter} = C_{CVS} \cdot \frac{1}{DR_{Sec\ PM}}$$

$$lpha_{Loss} = fig(L, D, \dot{V}, \Delta Tig)$$
 (Not applied to presented results)

$$DR_{PPS} = 0.0053 \cdot [psi] + 1.3082$$

$$DR_{Sec\ PM} = \frac{\dot{V}_{sf}}{\dot{V}_{sf} - \dot{V}_{sec}}$$

SEMTECH

OBS

Results - Engine Test Cell

- PPS Signal Filtering/Smoothing:
 - Savitzky-Golay (Least-Squares Smoothing Filters)
 - For Steady-State:
 - Frame Size 8.1 sec
 - Filter Order 3
 - For Transient Cycle:
 - Frame Size 2.1 sec
 - Filter Order 5
- Instrument Grounding at On-Road

PPS Concentration as calculated at different locations in the measurement stream between PPS sample cell (blue line) and gravimetric filter face

Results - Engine Test Cell (ESC)

- AVL MSS => Corrected for temperature influence and thermophoretic losses
- TPM includes absorbed SOF => PPS and AVL do not measure this fraction => Possible correction based on HC

Results - Chassis Dynamometer

Conclusion and Outlook

- Response of PPS to PM emissions during the transient test cycle (FTP) was similar to that of EEPS (R² Value: 0.8969) and AVL MSS (R² Value: 0.8479).
- Development of NTE In-use Measurement Method using the PPS Signal to calculate PM during NTE events.
- Demonstration of this method based on engine dynamometer experiments => PPS-Method captures general trends.
 - Possible influence of high exhaust flow rates on sample extraction efficiency
 - Accounting for particle losses within transfer pipes
 - Influence of SOF on gravimetric filter weight
- Chassis Dynamometer and On-Road analysis is ongoing.

Thank You for Your Attention

Results - PPS vs. AVL MSS, Engine-out

- Engine: Mack MP-7 (MY 2004)
- No aftertreatment, engine-out measurement
- FTP-Cycle, Dynamometer

Linear Regression Coefficients: (Least Squares Method)

PPS [mg/m3] = 0.1787+ 0.0581*PPS [mV]

R-Square Value: 0.8479

Results - PPS vs. EEPS, Engine-out

- Engine: Mack MP-7 (MY 2004)
- No aftertreatment, engine-out measurement
- FTP-Cycle, Engine Dynamometer

Linear Regression Coefficients: (Least Squares Method)

PPS [#/m3] = 2.244E4+ 1.777E3*PPS [mV]

R-Square Value: 0.8969

Sensor – Operational Parameters, cont'

- Low temperature version max 250 °C
- High temperature version max. 850 °C
- High concentration version 10 μg/m³-250 mg/m³
- High sensitivity version ~1μg/m³
- Sensor dimensions 20-40 mm diameter, 100-200 mm long – to be decided together with customers
- Electronics; 80x40x20 mm³
- Sensor output calibrated to mg/m³ or #-particles/cm³
- Sensor is installed outside the tailpipe with only inlet and outlet in the tailpipe
- Environmental conditions up to 85 degrees C, IP 45

Sensor - Description of Technology Cont'd

