

National Institute for Public Health and the Environment *Ministry of Health, Welfare and Sport*

Impact of Emission Control Technologies and Fuel Type on the Oxidative and Inflammatory Potential of Engine Exhaust Particles

Gerlofs-Nijland, Totlandsdal, Bønløkke, Ntziachristos et al., manuscript in preparation

National Institute for Public Health and the Environment Ministry of Health, Welfare and Sport

Content

- 1. Background
- 2. Study design
- 3. Sampling engine emission
- 4. Toxicity testing
- 5. Summary
- 6. SETPOINT

Background

- Link between traffic-related particulate matter (PM) and adverse human health effects
- Health effects of emissions using different fuel types and/or new emission control technologies less investigated
- Focus on emission reduction to meet the standard
- Current study examined oxidative and inflammatory potential using a 50% v/v biodiesel (B50) blend and/or a diesel particle filter (DPF)

Study design

- Toxicity characterisation of engine exhaust with two fuel types with or without DPF
- Pure fossil diesel (EN590:2009) and 50% volume blend with Rapeseed Methyl Ester (RME; EN14214)
- Driving cycles to simulate urban or rural driving conditions
- Sampling directly from the dilution tunnel (constant volume sampling CVS) on teflon-coated glass fiber filters with high volume sampler (HVS)
- Particle collection (methanol extraction) and toxicity testing (inflammation, cytotoxicity, oxidative stress)

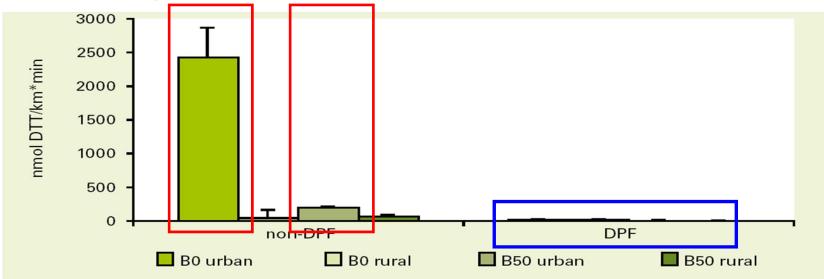
Sampling engine emission Test vehicle and main specifications

Honda Accord 2.2i-CTDi Engine: 4 cyl., Common rail, Direct injection Engine Capacity: 2200cc Engine Power: 100 kW Pollution control: EGR, Oxidation pre-catalyst, 2-stage DOC with DeNOx characteristics ("4-way catalyst"), DPF Gearbox: Manual Certification: Euro 4 Mileage: 79599 km

Sampling engine emission Impact emission control technology and fuel

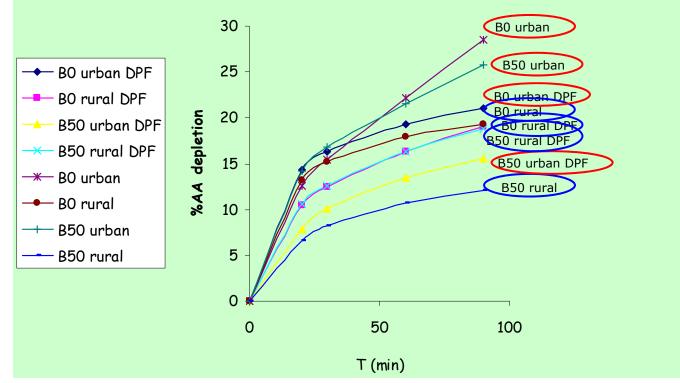
Sample code	DPF	Fuel	Cycles		Mass (mg)	E	Emission rate (mg/km)	
B0 urban	no	diesel	1x UDC + 2x Artemis urban		24,30	Τ	46,10	Π
B0 rural	no	diesel	1x EUDC + 1x Artemis road		28,18		29,72	
B50 urban	no	biodiesel blend	1x UDC + 2x Artemis urban		13,52	1	25,76	
B50 rural	no	biodiesel blend	1x EUDC + 1x Artemis road		12,68		13,37	
B0 urban	yes	diesel	1x UDC + 9x Artemis Urban	Π	3,82		0,61	
B0 rural	yes	diesel	4x EUDC + 4x Artemis Road		3,58		0,42	
B50 urban	yes	biodiesel blend	1x UDC + 9x Artemis Urban		1,58		1,47	
B50 rural	yes	biodiesel blend	4x EUDC + 4x Artemis Road		2,25		0,67	
				T				

- Diesel particle trap (DPF) reduction PM emission
- Biodiesel (B50) reduction PM emission

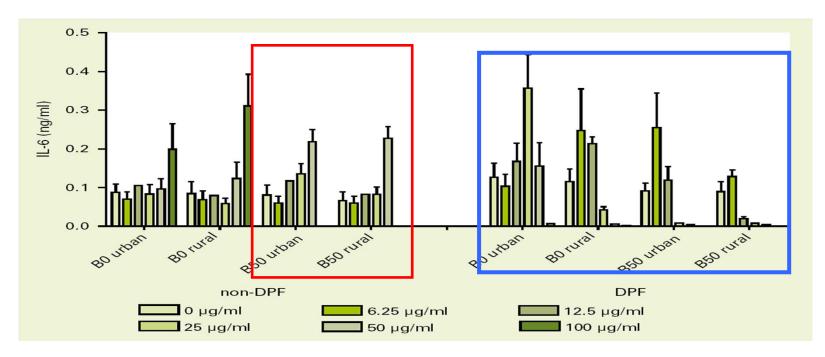


Toxicity testing

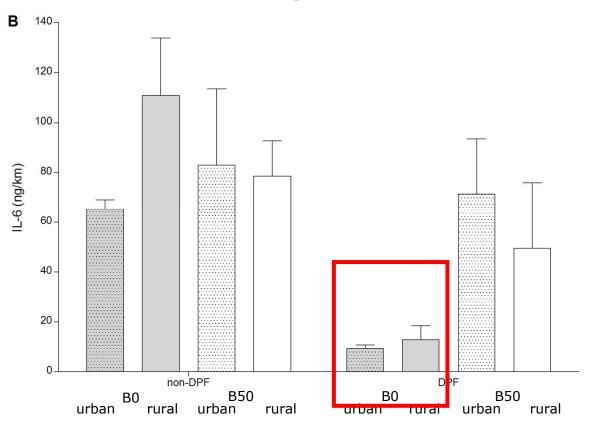
- Oxidative potential (to predict toxicity)
 - DTT: consumption
 - Ascorbic acid (AA): consumption rate in time
- Cytotoxicity
- Inflammation
 - human bronchial epithelial cell line (IL-6, IL-8)
 - whole blood assay (IL-6, IL-8, TNF-a etc.)


Oxidative potential (to predict toxicity)

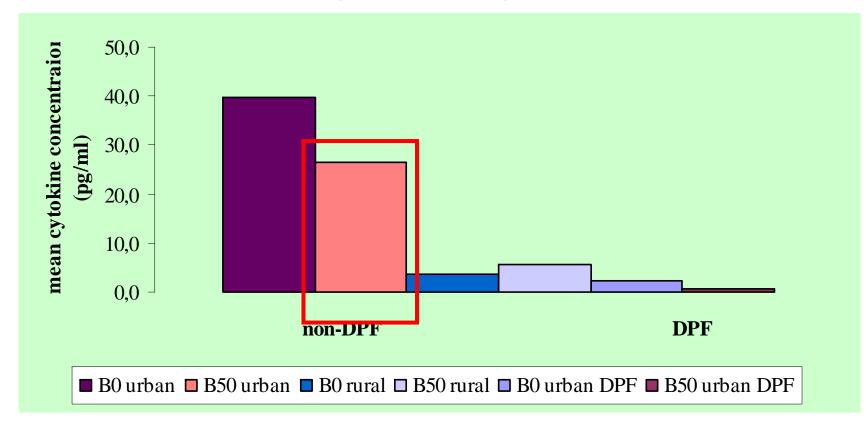
- Biodiesel (B50) reduction oxidative potential
- Beneficial effect for DPF
- Expression outcomes per kilometre more relevant for risk assessment


Oxidative potential – ascorbate assay

- Biodiesel (B50) reduction oxidative potential
- In general beneficial effect DPF only for urban conditions
- Rural conditions no influence of fuel if DPF applied


"Inflammation in the lungs"

- Biodiesel (B50) increase inflammatory response (per mass)
- DPF no beneficial effect (per mass)


"Inflammation in the lungs"

•DPF beneficial effect (mainly for diesel)

"Inflammation in systemic system"

•Biodiesel (B50) reduction inflammatory response

Summary

- Biodiesel
 - reduction of oxidative potential
 - increased inflammatory response in the lung
 - reduced inflammatory response in sytemic system

• DPF

- overall beneficial effect
- also for inflammatory response in the lung, however, mainly for diesel and only when expressed per km

SETPOINT

- Screening Emissions for Toxic Potential –Organizing INTernational harmonization
- Network to facilitate knowledge transfer
- Design and establish an international harmonised test approach for toxicity testing of engine emissions
- Critical evaluation of new developments to be able to compare results and to put new products or technology in perspective

Acknowledgements

- Dutch Ministry of Infrastructure and the Environment (Henk Baarbé)
- Aristotle University, Thessaloniki, Greece (Leonidas Ntziachristos, Theodoros Tzamkiozis, Zissis Samaras)
- Norwegian Institute of Public Health, Oslo, Norway (Annike Totlandsdal, Marit Låg, Per Schwarze)
- Institute of Public Health, Aarhus, Denmark (Jakob Bønløkke, Torben Sigsgaard)
- National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands (Daan Leseman, Flemming Cassee, Miriam Gerlofs-Nijland)

