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Oxidative stress caused by generation of free radicals and related reactive oxygen
species (ROS) at the sites of deposition has been proposed as a mechanism for many of the
adverse health outcomes associated with exposure to particulate matter (PM). In addition to
particle-induced generation of ROS in lung tissue cells, several recent studies have shown that
particles may also contain ROS. As such, they present a direct cause of oxidative stress and
related adverse health effects. Recently, a new profluorescent nitroxide molecular probe
(bis(phenylethynyl)anthracene-nitroxide; BPEAnit) (Fairfull-Smith and Bottle 2008), developed
at QUT was applied in an entirely novel, rapid and non-cell based assay for assessing the
oxidative potential of particles (i.e. potential of particles to induce oxidative stress). The
technique was applied on particles produced by several combustion sources, namely cigarette
smoke, diesel exhaust and wood smoke (Miljevic, Fairfull-Smith et al. 2010; Miljevic, Heringa et
al. 2010; Surawski, Miljevic et al. 2010)). Profluorescent nitroxides have a very low fluorescence
emission, but upon radical trapping or redox activity, a strong fluorescence is observed. One of
the main findings from the initial studies undertaken at QUT was that the oxidative potential
per PM mass significantly varies for different combustion sources as well as the type of fuel
used and combustion conditions.

However, possibly the most important finding from our studies was that there was a
strong correlation between the organic fraction of particles and the oxidative potential
measured by the PFN assay, which clearly highlights the importance of organic species in
particle-induced toxicity (Miljevic, Heringa et al. 2010; Surawski, Miljevic et al. 2010).

To further explore this correlation we have focused our research on investigating the
role of various fuels and diesel injection technologies on the oxidative capacity (ROS
concentration) of diesel particles. In the first study (Surawski, Miljevic et al. 2011) we have
investigated 3 different fuels (biodiesel, synthetic diesel and petro-diesel) with 2 different
injection technologies (common rail and direct injection). In the second study (Surawski,
Miljevic et al. 2011) we have investigated the role of 3 different biodiesel fuel feedstocks (soy,
tallow and canola) at 4 different blend percentages (20%, 40%, 60% and 80%). The first study



showed a stronger influence of the engine technology than fuel type on particle oxidative
capacity. While a significant decrease of PM was observed for the newer common rail
technology it was interesting to observe an increase in the particle oxidative capacity. Given
that rather large increases in ROS emissions occurred with the common rail injection
configuration (in some cases a more than 10-fold increase was observed), this has significant
implications for the overall toxicological properties of the emitted particles. The somewhat
disturbing overall conclusion from the first study was that the injection technology which
produces fewer particles (i.e., common rail injection) has significantly more oxidative and
genotoxic material available on the surface of the particle, potentially causing health effects
that are not captured by considering only particle number, or particle mass based emissions.

In the second study we observed that ROS concentrations increased monotonically with
biodiesel blend percentage, but did not exhibit strong feedstock variability. Furthermore, the
ROS concentrations, and therefore the oxidative capacity, correlated quite well with the organic
volume percentage of particles — a quantity that increased with increasing blend percentage.
The increase in the blend percentage from 20 to 80% has on one side resulted in a significant
decrease in particle mass and particle surface but on the other side has resulted in an increase
in the particle oxidative capacity. Our results have implications for the regulation of DPM using
only physical properties such as mass, surface or even number based metric. Regulating purely
the particle surface area or mass would not be able to detect results such as these, as the
surface chemistry of particles is not explicitly considered. Therefore, not only the raw surface
area of particles but also the surface chemistry of particles is important for assessing the health
impacts of DPM. These results suggest that the development of instrumentation (and
standards) that enable the internal mixing status of particles to be determined (within a surface
area framework) are potentially required.
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PM & health effects

- Epidemiological studies - strong associations between levels of
ambient particulate matter (PM) and increased respiratory and
cardiovascular disease morbidity and mortality

* mechanism(s) by which particles induce adverse health effects
are still not entirely understood

Proposed mechanism: Oxidative stress hypothesis

:3——) PM — free radicals; ROS — oxidative stress — inflammation
_ !

cell injury / death
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PM & health effects

Oxidative stress hypothesis

toxicological studies
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PM & health effects

Oxidative stress hypothesis

toxicological studies

/

In vivo in vitro
. . . e N\
Human inhalation studies; Cell-free
Animal inhalation and Cell exposure (acellular)
instillation studies studies assays

Properties of particles relevant for the observed health effects?
-size
-composition: —
1. transition metals Generatlon Of ROS |n
(M™*+ H,0, - M™D*+ -OH + OH") [~ _
2. organics (PAHSs; quinones) cells —endogenous ROS
3. ROS inherent, exogeneous — direct
cause of ox. stress 5




Motivation of the study

Develop a cell-free assay for rapid and routine
screenings of the oxidative potential of PM —
ROS concentration.

Establish a relationship between particle
size/surface area and ROS concentration.

Establish the relationship between the volatile
organic fraction of PM and ROS concentration
for various airborne particle (pollution) sources.




Profluorescent nitroxides (PFNSs)

nitroxide
. R®
Fluorophore ‘@ »
ROS

Reduction or

profluorescent oxidation _fluorescent |

- powerful optical sensors applicable as detectors of radicals and redox
active agents

+ Nitroxides: -trap C-, S- and P- centred radicals — stable adducts
- scavenge O-centred radicals through redox mechanisms

- applied in biological studies as antioxidants, detection of hydroxyl and
peroxyl radicals, monitoring thermo-oxidative polymer degradation and
photogeneration of radicals in polymer films
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Profluorescent nitroxides synthesised at
QUT BPEARI

Phenanthrene-
nitroxide ' N
/
A= 294 nm Flourescein- o
Aem=355 Nm nitroxide 9,10—diphenylanthracene-
372nm nitroxide
A= 495 nm
Ap=515nm A= 395nm
o Aem=410 nm 9,10-bis(phenylethynyl)anthracene-
430 nm Nitroxide (BPEAnNit)
A= 430 nm
A.,,=485 nm
510 nm

Fairfull-Smith and Bottle. Eur J Org Chem (2008) (32) pp. 5391-5400
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Sampling methodology
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BPEAnNIt assay — sampling:

HEPA]

bubbling aerosol through an impinger with fritted
nozzle tip containing BPEARit solution
fluorescence measurement

solvent — dimethylsulfoxide (DMSO)
test & HEPA-filtered control sample taken

I485nm(teSt) B I485nm(CtrI) I485nm(ROSparticIe)

!

calibration curve

n (Rosparticle)

Normalized to the measured particle mass



Cigarette smoke - mainstream

Linearity, reproducibility?
Puffs — equal volumes of aerosol of the same physicochemical properties

200
T a1 1M BPEAnIt
180 4 ——2 puffs
] — 4 puffs
filter - for 160 —_—
gas phase bubbling . 6 puffs
S 1 8 puffs
I I | g 140
th | 2 120 |
reejway vaive g - _ 160,
Q 1 3
= 100 4 S 160
= £
3 | S 140
2 804 8
Q i = 120
3 >
o 60+ @ 100
pump 5 ] 5
T 40 e
E MFC 1 § 60
20 g 0]
mass flow controller E
0 T T T 20 r . T - -
460 480 50 No. of puffs

Miljevic et al., Atmospheric Environment
(2010) vol. 44 (18) pp. 2224-2230

Wavelength(nm) \l/

Linear, reproducible
ell) ] 10




Cigarette smoke Diesel exhaust Wood smoke
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Wood smoke

Automatic pellet boiler:

- Automatically fed

* More controlled combustion conditions
(air supply and amount of fuel) — more
efficient

*  Low particle emissions — dominated by
alkali metal salts (KCI, K2S04)

N

Log wood
stove:

+ Manually fed (batch-wise
combustion)

« less controlled combustion

* highly variable emissions —
higher percentage of organics

ey soot

Oxidative potential?
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Wood smoke

Automatic pellet boiler:
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Results: Sampling through thermodenuder
(TD)
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Results: ROS vs. organics .=

Organics — from the AMS
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Experimental Setup for Engine
Emissions Measurements

Ambient air Compressed
l air
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ROS concentration (nmol mg-1)
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Ethanol fumigation
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Two Injection technologies and three
fuels (Diesel, B20, FT blend)

PM, (DIRECT INJECTION) PM, (COMMON RAIL INJECTION)
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PAH emission factors and ROS concentrations

Two Injection technologies and three
fuels (Diesel, B20, FT blend)
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Two Injection technologies and three
fuels (Diesel, B20, FT blend)
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Influence of biodiesel feedstock

3 different feedstock's:

© Soy

- Tallow

- Canola

- 20, 40, 60, 80 and 100% (only soy)
Measured:

+ Particle mass, number and surface (NSAM)
- PAH, ROS (only for 20% and 80% blends)
» Organic (volatile) volume percentage
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Particle mass Particle number
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ROS concentrations
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ROS v.s. organic volume percentage
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Consequences

In underground mines or tunnels the ventilation rate is
limited.

Very often the air quality limits the number of vehicles
that can be used and therefore the productivity.

If the biodiesels were used due to their much smaller
mass emissions they would have enabled a larger
number of vehicles to be used until the ambient PM
mass level would reach the maximum allowed.

Although we would have the same ambient PM the
particles would have a much larger oxidative capacity —
more toxic.




Particle Surface area as a metric?
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Similar results on the role of organic/volatile fraction
on particle oxidative capacity also observed by
others (see for example Biswas et al, EST, 2009)
but with a different probe DTT.

A decrease in particle mass/surface emission is very
often followed by an increase in the volatile particle
component — increase in the oxidative capacity of
particles.

Regulating only physical metrics
mass/number/surface area would not be able to
detect results such as those presented here.

Not only the raw surface area of particles but also
the surface chemistry of particles is important for
assessing the health impacts of DPM.
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