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EXTENDED SUMMARY

Due to tightening emissions legislations, both within the US and Europe, including concerns regarding
greenhouse gases, next-generation combustion strategies for internal combustion (IC) diesel engines that
simultaneously reduce exhaust emissions while improving thermal efficiency have drawn increasing
attention during recent years. In-cylinder combustion temperature plays a critical role in the formation of
pollutants as well as in thermal efficiency of the propulsion system. One way to minimize both soot and
NO, emissions is to limit the in-cylinder temperature during the combustion process by means of high
levels of dilution via exhaust gas recirculation (EGR) combined with flexible fuel injection strategies.
However, fuel chemistry plays a significant role in the ignition delay; hence, influencing the overall
combustion characteristics and the resulting emissions. The Advanced Vehicles, Fuels, and Lubricants
(AVFL) committee of the Coordinating Research Council (CRC) specified and formulated a matrix of nine
test fuels for advanced combustion engines (FACE) based on the variation of three properties, namely,
cetane number (CN), aromatic content, and 90 percent distillation temperature (T90).

The primary objective of this work was to study the effects of various FACE diesel fuels on the
nanoparticle formation during low temperature combustion processes. An experimental study was
performed at West Virginia University’s Engine and Emission Research Laboratory (EERL) to determine
the FACE property effects on the low temperature combustion (LTC) process in a turbo-charged GM 1.9L
light-duty compression ignition engine under steady-state operating conditions (2100rpm/3.5bar BMEP). A
comprehensive test matrix was developed including intake oxygen (O.), as a surrogate for EGR fractions,
and rail-pressure parameter variations during single injection timing settings. Furthermore, the influence of
varying injection timing and fuel fraction during split injection strategy onto nanoparticles was investigated
as well.

Diluted exhaust gas emissions extracted from the full-flow CVS tunnel were measured continuously using a
Horiba MEXA-7200D gaseous emissions analyzer and included total hydrocarbons (THC), carbon
monoxide (CO) as well as carbon dioxide (CO,) and oxides of nitrogen (NO,). NO, and O, concentrations
were measured in the raw exhaust and intake manifold using zirconia-oxide type sensors (Horiba MEXA-
720 NOy), respectively.

Furthermore, the AVL Micro Soot Sensor (MSS-483), consisting of a measuring unit and an exhaust
conditioning unit, was used to measure the soot concentration in the raw exhaust.

Nanoparticle concentration and size distributions were determined using the Exhaust Emissions Particle
Sizer (EEPS™) spectrometer from TSI Inc. (model 3090) as well as the Differential Mobility Spectrometer
(DMS) from Cambustion (model DMS500). Continuous exhaust gas samples were extracted from the CVS
tunnel (dilution ratio DR = 10) and routed through a double stage dilution system using ejector type dilutors
(AirVac, TD H-110). The first stage was maintained at 140°C (DR = 6) in order to suppress condensation of
organic materials onto carbonaceous particles as well as particle nucleation phenomena, while the second
stage utilized dilution air at ambient temperatures (~25°C, DR = 11) in order to further reduce the partial
pressures of any volatile compounds and reduce the sample temperature to the required instrument inlet
conditions.

Results showed that particle number concentration increased with a simultaneous increase in particle
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diameter for both single and split injection strategies in case of FACE diesel fuels with increasing CN for
the low NO,, low soot and highest BTE tests. Advancing the start of injection timing led to a decrease in
total particle number concentration, but a simultaneous increase in nanoparticle (< 50nm) emissions was
observed for low CN fuels.

Table 1 lists the FACE diesel fuel target values together with actual values resulting from ASTM
International standard analyses.

Table 1 FACE Diesel Fuel Properties

Fuel Cetane Aromatic 90% Distill. Specific H/C Ratio Net Heat of
Number Content Temperature Gravity Combustion
[-] [Mass %] [°C] [-] [-] [MJ/kg]
Tgt. Act. Tgt. Act. Tgt. Act. Actual Actual Actual
FACE 1 30 29.93 20 26.1 270 269 0.8084 1.956 42.803
FACE 2 30 28.00 20 23.1 340 336 0.8037 1.988 43.155
FACE 3 30 32.02 45 50.0 270 270 0.8401 1.749 42.147
FACE4 | 30 28.44 45 40.7 340 337 0.8355 1.819 42.495
FACE 5 55 54.20 20 22.2 270 276 0.8086 1.967 42.897
FACE 6 55 53.30 20 21.1 340 341 0.8411 1.871 42.797
FACE 7 55 44.30 45 46.2 270 267 0.8375 1.773 42.359
FACE 8 55 50.00 45 435 340 342 0.8682 1.704 42.196
FACE9 | 425 | 4495 | 325 | 37.0 305 321 0.8465 1.788 42.465
ULSD - 44.00 - 34.7 - 306 0.8496 1.796 42.857

Note: Tgt. = Target Value; Act. = Actual Value

The particle size distribution for the optimal split injection tests for low NOy condition is depicted on a
double-logarithmic scale in Figure 1. The particle diameter D, in nanometers is plotted versus the
normalized particle concentration, which is integrated over each size bin (instrument channel), in number of
particles per volume (cm®). In general, there was an increase in particle number concentration with
simultaneous increase in particle diameter as the fuel CN increases for the low NOj tests, as indicated by an
arrow in Figure 1. The shorter ignition delay for higher CN fuels leads to a greater inhomogeneity of the
cylinder charge and therefore, increased particle emissions due to higher fuel fractions allocated to the
diffusion burning, as compared to lower CN fuels.
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Figure 1 Particle Size Distribution for Optimal Split Injection Tests for Low NO, — Filled
Markers for EEPS™, Hollow Marker for DMS-500



In Figure 2, selected test runs for the low cetane group are shown. There was a trend towards a more
pronounced bimodal distribution observed when comparing FACE 4 (high T90 / high aromatics) with
FACE 1 (low T90 / low aromatics) and FACE 3 (low T90 / high aromatics), which could be explained by
the difference in distillation temperature (T90) between FACE 4, FACE 1 and FACE 3.
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Figure 2 Particle Size Distribution for Low Cetane Fuels — Filled Markers
for EEPS™, Hollow Marker for DMS-500

In general, advancing start of injection (SOI) timing provides more time for homogenization; hence,
leading to a decrease in particle concentration. This is shown in Figure 3 for a low and high CN fuel,
namely FACE 4 and 8, respectively. Even though this trend is observed for both, high and low CN fuels,
it is somewhat restricted to accumulation mode particles, since a simultaneous increase in nanoparticle
emissions was observed for low CN fuels, shown here for FACE 4 (see arrows). Due to higher variability
in the data, this trend in enhanced nanoparticles could not be confirmed for FACE 8.
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Background and Motivation

The Advanced Vehicles, Fuels, and Lubricants (AVFL) committee of the Coordinating
Research Council (CRC) specified and formulated a matrix of 9 test fuels for advanced
combustion engines (FACE) based on the variation of three properties: %2

1. Cetane number (CN)
2. Aromatic content
3. 90 percent distillation temperature (Tq,)

Published studies discussing FACE diesel fuel property effects on combustion and
exhaust emissions (gaseous & soot) 34>

PM composition, concentration and size distribution studies focused on advanced
combustion modes &7

» Higher SOF compared to conventional diesel
» Lower count mode diameter (CMD) than conventional diesel
» Almost same total number concentration (TNC)

Study of the variation of 4 engine parameters (VGT, EGR, Pilot SOI, RP) on PM
concentration and size distribution using a low and high CN fuel 8

» No particle concentration and size distribution data in published literature as a
function of FACE diesel fuel property effects




Objectives

» Primary objective:

e To study the effects of various FACE diesel fuels
on the nanoparticle formation during LTC modes

» Specific objectives:

e To assess the influence of the three main
properties of FACE diesel fuel, CN, Tq,, and
aromatic content on particle concentration and
size distributions during LTC operation

e To investigate single and split injection strategies




Methodology - Fuel Properties

Target values blue Target Fuel Properties:

Actual values red 6 Cetane Number 30 and 55
S P i AT S U 90% Distillation Temperature | 270 and 340°C
Aromatic Content 20 and 45% (mass)

Actual Fuel Properties:

Cetane Aromatic 90%
Number Content Distillation
[-] [Mass %] Temp. [°C]

29.93 26.1 269
28.00 23.1 336
32.02 50.0 270
28.44 40.7 337
54.20 222 276
53.30 21.1 341
44.30 46.2 267

50.00 43.5 342
* FACE 2 was substituted by an ultra low sulfur (ULSD) 2007 44.95 370 321

certification fuel as a “check fuel”
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I\/Iethodology - Injection Strategies/Test Selection

* Engine operating conditions for injection strategies:

Single Injection Strategy: Split Injection Strategy:

e Optimal Split and Single Injection Tests:
» For first comparison, isolated the 10 tests with highest BTE, then selected:

— test with highest BTE -> “Highest BTE”
— test with lowest soot emissions -> “Low Soot”

— test with lowest NO, emissions -> “Low NO,”

e Low, Medium and High Cetane Fuel Comparison:
» Blocked out predominant effect of CN
> Investigated effects of Ty, and aromatic content




Experimental Setup - Engine

Test Engine Specifications:

Type CDTi Diesel Engine
Manufacturer General Motors
Model Z19DTH

Valve Configuration 4 Valves per Cylinder
Year 2005

Configuration In-Line 4 Cylinder

Displacement 1.9L

Bore 82mm
Stroke 90.4mm
Compression Ratio 17.5:1

Turbocharger Garret VGT (Intercooler)

Injection System Common Rail
EGR Cooled, External
Rated Power 110kW @ 4000rpm

e Drivven Automotive Control ECU

* Intake and raw exhaust O, measurement
(MEXA-720 ZrO,-sensor) => EGR fraction

 Kistler in-cylinder pressure transducer

Advanced combustion criteria for GM Z19DTH engine:

Kistler Pressure Sensor




Experimental Setup - PM Instrumentation

HEPA filtered

Dilution Air

CVS-SSV (40 CFR, Part 1065)

™

Ejector Gaseous Emission
Dilutor 1t Stage Mini Dilution Tunnel HC, CO, CO,,

To
D_, Outlet NO, NO
1

2" Stage Mini Dilution Tunnel Secondary
Dilution Air,
9 HEPA Filtered,

Chilled

Heated, Dry, HEPA
Filtered Air for Dry, 25°C
1% Stage Hot Dilution Compressed

HEPA Filtered

Air Supply Gravimetric

Insulated PM

—— Stainless Steel
Line

Exhaust Transfer Pipe

mm ©

o=

EEPS™ DMS
(TSI, Model 3090) (Cambustion, Model
DMS500)

Temperature | Dilution Residence
Ratio Time

[°C] [-] [ms]
CVS Tunnel 3142 ~ 10 6935

1st stage hot
dilution

2nd stage cold
dilution

140+5 519

25+5 373




Results - Optimal Split Injection Tests
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Results - Optimal Split Injection Tests

Low NO,

TNC = 2.552 x £07 [#/cm?]
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Results - Optimal Single Injection Tests
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Results - Low Cetane Fuels

Split Injection

CMD: 39nm 65nm
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Results - High Cetane Fuels
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Results - Injection Timing Comparison
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Conclusions

e Particle number concentration increased with a
simultaneous increase in particle diameter for
both, single and split injection strategies in case
of FACE diesel fuels with increasing CN for the
low NO,, low soot* and highest BTE* tests
(*: not shown in this presentation)

Particle number concentrations were higher for
single injection compared to split injection
strategy

Low CN fuels exhibit wide particle number

distributions whereas high CN fuels tend to have
especially narrow accumulation modes




Conclusions (cont’d)

e CN had the highest effect, followed by T,,, and
aromatic content; CN may mask the other 2 fuel
properties

e The 90 percent distillation temperature had
significant influence on the particle size
distribution: the count mode diameter was found

to be lower for low CN and high T, fuels, and
also lower for high CN and low T, fuels

Advancing the start of injection timing led to a
decrease in particle number concentration, but a
simultaneous increase in nanoparticle emissions
was observed for low CN fuels
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Backup - 40 CFR 1065 Compliant Laboratory Setup
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Backup - Emissions Comparison

Emissions Comparison of Optimal Split and Single Injection Tests for Low NO,:

HC CcO Soot
[o/kwh] [o/kwh] [mg/kWh]

Split | Single Split | Single | Split | Single

7.35 6.91 19.72 | 19.10 6.6 2.0

4.36 3.58 16.45 | 12.65 9.1 2.0

4.59 2.94 17.64 | 17.09

1.90 1.30 10.18 | 10.93

1.77 1.38 10.11 | 13.73

1.86 1.12 9.72 | 10.37

1.38 1.11 7.37 | 15.02

1.82 1.02 11.56 | 15.54

1.09 1.12 6.63 | 13.83

Note: Split / Single = Split / Single Injection Strategy




Backup - Low Cetane Fuels
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Backup - Injection Timing Comparison
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Backup - Emissions Comparison

Emissions Comparison for Low and High CN and Varying SOl Timing:

Test TNC HC NO, CO
Parameters [#/cm?] [a/kwh] [a/kwh] [a/kwWh]

10 40 35* 2.640x107 5.63 0.927 15.12

840 35" 2.232x107 5.80 . 0.615 17.11

640 35 2.552x107 7.35 0.476 19.72

4 40 35 3.217x107 8.64 0.408 22.88

240 35" 4.584x107 8.70 0.381 23.73

4 40 35 6.749x107 2.10 . 0.657 10.73

240 35" 8.923x107 2.52 0.586 11.48

0 40 35° 9.226x107 2.88 0.524 11.45

-2 40 35" 1.058x108 2.72 . 0.513 10.96

-4 40 35° 9.299x107 2.67 0.463 11.98
“Note: Parameters x yy zz: x = SOI [°BTDC]; yy = Pilot SOI [°PBTDC]; zz = Fuel Split of Pilot [%]
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Background and Motivation

The Advanced Vehicles, Fuels, and Lubricants (AVFL) committee of the Coordinating
Research Council (CRC) specified and formulated a matrix of 9 test fuels for advanced
combustion engines (FACE) based on the variation of three properties: %2

1. Cetane number (CN)
2. Aromatic content
3. 90 percent distillation temperature (Tq,)

Published studies discussing FACE diesel fuel property effects on combustion and
exhaust emissions (gaseous & soot) 34>

PM composition, concentration and size distribution studies focused on advanced
combustion modes &7

» Higher SOF compared to conventional diesel
» Lower count mode diameter (CMD) than conventional diesel
» Almost same total number concentration (TNC)

Study of the variation of 4 engine parameters (VGT, EGR, Pilot SOI, RP) on PM
concentration and size distribution using a low and high CN fuel 8

» No particle concentration and size distribution data in published literature as a
function of FACE diesel fuel property effects




Objectives

» Primary objective:

e To study the effects of various FACE diesel fuels
on the nanoparticle formation during LTC modes

» Specific objectives:

e To assess the influence of the three main
properties of FACE diesel fuel, CN, Tq,, and
aromatic content on particle concentration and
size distributions during LTC operation

e To investigate single and split injection strategies




Methodology - Fuel Properties

Target values blue Target Fuel Properties:

Actual values red 6 Cetane Number 30 and 55
S P i AT S U 90% Distillation Temperature | 270 and 340°C
Aromatic Content 20 and 45% (mass)

Actual Fuel Properties:

Cetane Aromatic 90%
Number Content Distillation
[-] [Mass %] Temp. [°C]

29.93 26.1 269
28.00 23.1 336
32.02 50.0 270
28.44 40.7 337
54.20 222 276
53.30 21.1 341
44.30 46.2 267

50.00 43.5 342
* FACE 2 was substituted by an ultra low sulfur (ULSD) 2007 44.95 370 321

certification fuel as a “check fuel”
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I\/Iethodology - Injection Strategies/Test Selection

* Engine operating conditions for injection strategies:

Single Injection Strategy: Split Injection Strategy:

e Optimal Split and Single Injection Tests:
» For first comparison, isolated the 10 tests with highest BTE, then selected:

— test with highest BTE -> “Highest BTE”
— test with lowest soot emissions -> “Low Soot”

— test with lowest NO, emissions -> “Low NO,”

e Low, Medium and High Cetane Fuel Comparison:
» Blocked out predominant effect of CN
> Investigated effects of Ty, and aromatic content




Experimental Setup - Engine

Test Engine Specifications:

Type CDTi Diesel Engine
Manufacturer General Motors
Model Z19DTH

Valve Configuration 4 Valves per Cylinder
Year 2005

Configuration In-Line 4 Cylinder

Displacement 1.9L

Bore 82mm
Stroke 90.4mm
Compression Ratio 17.5:1

Turbocharger Garret VGT (Intercooler)

Injection System Common Rail
EGR Cooled, External
Rated Power 110kW @ 4000rpm

e Drivven Automotive Control ECU

* Intake and raw exhaust O, measurement
(MEXA-720 ZrO,-sensor) => EGR fraction

 Kistler in-cylinder pressure transducer

Advanced combustion criteria for GM Z19DTH engine:

Kistler Pressure Sensor




Experimental Setup - PM Instrumentation

HEPA filtered

Dilution Air

CVS-SSV (40 CFR, Part 1065)

™

Ejector Gaseous Emission
Dilutor 1t Stage Mini Dilution Tunnel HC, CO, CO,,

To
D_, Outlet NO, NO
1

2" Stage Mini Dilution Tunnel Secondary
Dilution Air,
9 HEPA Filtered,

Chilled

Heated, Dry, HEPA
Filtered Air for Dry, 25°C
1% Stage Hot Dilution Compressed

HEPA Filtered

Air Supply Gravimetric

Insulated PM

—— Stainless Steel
Line

Exhaust Transfer Pipe

mm ©

o=

EEPS™ DMS
(TSI, Model 3090) (Cambustion, Model
DMS500)

Temperature | Dilution Residence
Ratio Time

[°C] [-] [ms]
CVS Tunnel 3142 ~ 10 6935

1st stage hot
dilution

2nd stage cold
dilution

140+5 519

25+5 373




Results - Optimal Split Injection Tests

P
=

=]

Farameters x yy zz:

®x =30l ["BTDC]
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Results - Optimal Split Injection Tests

Low NO,

TNC = 2.552 x £07 [#/cm?]
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Results - Optimal Single Injection Tests
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¥x = Intake Oxygen [%9)
yyyy = Rail Pressure [bar]
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Results - Low Cetane Fuels

Split Injection

CMD: 39nm 65nm
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Results - High Cetane Fuels
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Results - Injection Timing Comparison
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Conclusions

e Particle number concentration increased with a
simultaneous increase in particle diameter for
both, single and split injection strategies in case
of FACE diesel fuels with increasing CN for the
low NO,, low soot* and highest BTE* tests
(*: not shown in this presentation)

Particle number concentrations were higher for
single injection compared to split injection
strategy

Low CN fuels exhibit wide particle number

distributions whereas high CN fuels tend to have
especially narrow accumulation modes




Conclusions (cont’d)

e CN had the highest effect, followed by T,,, and
aromatic content; CN may mask the other 2 fuel
properties

e The 90 percent distillation temperature had
significant influence on the particle size
distribution: the count mode diameter was found

to be lower for low CN and high T, fuels, and
also lower for high CN and low T, fuels

Advancing the start of injection timing led to a
decrease in particle number concentration, but a
simultaneous increase in nanoparticle emissions
was observed for low CN fuels




Thank You for Your Attention

CAFEE :resmatmissons
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Backup - 40 CFR 1065 Compliant Laboratory Setup
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Backup - Emissions Comparison

Emissions Comparison of Optimal Split and Single Injection Tests for Low NO,:

HC CcO Soot
[o/kwh] [o/kwh] [mg/kWh]

Split | Single Split | Single | Split | Single

7.35 6.91 19.72 | 19.10 6.6 2.0

4.36 3.58 16.45 | 12.65 9.1 2.0

4.59 2.94 17.64 | 17.09

1.90 1.30 10.18 | 10.93

1.77 1.38 10.11 | 13.73

1.86 1.12 9.72 | 10.37

1.38 1.11 7.37 | 15.02

1.82 1.02 11.56 | 15.54

1.09 1.12 6.63 | 13.83

Note: Split / Single = Split / Single Injection Strategy




Backup - Low Cetane Fuels
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Farameters x yy zz:
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yv = Pilat 301 [*BTDC]
2z = Fuel Split of Pilat [%]
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Backup - Injection Timing Comparison
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Farameters x yy zz:
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yv = Pilat 301 [*BTDC]
2z = Fuel Split of Pilat [%]
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Backup - Emissions Comparison

Emissions Comparison for Low and High CN and Varying SOl Timing:

Test TNC HC NO, CO
Parameters [#/cm?] [a/kwh] [a/kwh] [a/kwWh]

10 40 35* 2.640x107 5.63 0.927 15.12

840 35" 2.232x107 5.80 . 0.615 17.11

640 35 2.552x107 7.35 0.476 19.72

4 40 35 3.217x107 8.64 0.408 22.88

240 35" 4.584x107 8.70 0.381 23.73

4 40 35 6.749x107 2.10 . 0.657 10.73

240 35" 8.923x107 2.52 0.586 11.48

0 40 35° 9.226x107 2.88 0.524 11.45

-2 40 35" 1.058x108 2.72 . 0.513 10.96

-4 40 35° 9.299x107 2.67 0.463 11.98
“Note: Parameters x yy zz: x = SOI [°BTDC]; yy = Pilot SOI [°PBTDC]; zz = Fuel Split of Pilot [%]






