1	Mass Spectrometry of Soot From Six Different Sources:
2	Carbon-Cluster and Refractory CO ₂ Signals
3	J. C. Corbin ¹ , A. A. Mensah ¹ , B. Sierau ¹ , M. Gysel ² , M. Laborde ^{2,*} , A. Keller ³ , J. Kim ⁴ , A.
4	Petzold ^{4,**} , and U. Lohmann ¹
5	
6	¹ FTH Zurich Institute for Atmospheric and Climate Science, Switzerland
7	² Laboratory of Atmospheric Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland;
8	³ Institute for Aerosol Sensor Technology, FHNW, Switzerland;
9	⁴ Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, 82234
10	Oberpfaffenhofen, Germany.
11 12	*Now at: Aerosol Consulting ML GmbH. Ennetbaden. Switzerland. & Ecotech Ptv I td.
13	Australia. **Now at: Institut für Energie- und Klimaforschung IEK-8: Troposphäre,
14	Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
15	
16	Combustion-generated particles represent the most absorbing particles in the atmosphere
17	and are estimated to be the strongest anthropogenic climate warming agent after ${\sf CO}_2$
18	(IPCC, 2007; Ramanathan and Carmichael, 2008; Bond et al., 2013). In addition to direct
19	absorptive heating, such particles may enhance glacial melting, alter convection and
20	precipitation, react with atmospheric trace gases, and serve as cloud condensation or ice
21	nuclei (Bond et al., 2013). Their short atmospheric lifetime of days to weeks (Cape et al.,
22	2012) makes them ideal candidates for near-term climate mitigation (Shindell et al., 2012;
23	Bond et al., 2013). However, significant uncertainties in the atmospheric burden and
24	mixing state of different combustion-generated particles lead to large uncertainties in
25	current model predictions (Bond et al., 2013). Such uncertainties may be reduced by the
26	new Aerodyne Soot-Particle Aerosol Mass Spectrometer (SP-AMS), a commercial
27	instrument that can characterize both soot mixing state and chemical composition.
28	
29	We presented the major SP-AMS mass spectral features of six soots, in terms of their
30	relevance in atmospheric source identification. The soots were: fuel-rich and fuel-lean soot
31	from a propane/air diffusion flame; graphite-spark-generator soot; fullerene-enriched
32	soot; Regal Black, a commercial carbon black; and nascent aircraft-turbine soot. In general,
33	these soots exhibited a refractory mass spectrum dominated by two components, carbon-

cluster ions C_x^{n+} and CO_2^+ . ("Refractory" SP-AMS signals are those observed via laser-

induced vapourization of the soot, but not observed via thermal-desorption vapourization

36 at 600 °C.)

37

We found that the ratio of C_1^+/C_3^+ can be used to differentiate between C_x^{n+} spectra, and 38 propose that it may be a useful marker for distinguishing soot sources in atmospheric SP-39 AMS measurements. The C_1^+/C_3^+ ratios fell into two groups, with three soots (fuel-rich 40 flame; spark-generated; fullerene-enriched) showing $C_1^+/C_3^+ \approx 1$, while three others (fuel-41 lean flame; aircraft turbine; Regal Black) showed C_1^+/C_3^+ significantly less than 1. 42 Furthermore, the ratio was related to the overall C_x^{n+} mass spectrum: ratios of 1 43 corresponded to significant C_x^{n+} signal above mass-to-charge ratio 60 ($C_{x>5}^+$), while ratios 44 below 1 corresponded to the absence of high mass-to-charge C_x^{n+} ions. 45 46 The second major component of the refractory soot mass spectrum, CO₂⁺, was present in all 47 six soot samples. A corresponding CO+ signal was detected but not quantifiable. We showed 48 that the SP-AMS mass spectrum (vapourization laser on) of Regal Black differs from the 49 AMS spectrum (laser off) only in terms of C_x^{n+} and CO_x^+ (= $CO^+ + CO_2^+$), and propose that 50 this CO_r^+ signal originates from oxygenated moieties incorporated into the refractory soot 51 structure of Regal Black. Refractory C_x^{n+} and CO_x^+ may therefore be useful for identifying 52

⁵³ the source, composition and evolution of atmospheric combustion aerosols.

Figure 1. SP-AMS C₁⁺ / C₃⁺ ratios for CAST "Brown" soot (CBW), thermodenuded CBW (CBWTD), sparkgenerated soot (GFG), Fullerene-enriched Soot (FS), aircraft-turbine soot (TU), Regal Black (RB), and CAST "Black" soot (CBK), All samples were monodisperse particles at multiple sizes, except TU, which represents a single engine thrust sampled at a point behind the engine.

59

Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. J., Flanner, M. G., Ghan,
S., Kärcher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. G., Schulz, M.,
Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. K., Hopke, P. K., Jacobson, M. Z., Kaiser, J. W.,
Klimont, Z., Lohmann, U., Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G., and Zender, C. S.: Bounding
the role of black carbon in the climate system: A scientific assessment, J. Geophys. Res., n/a-n/a,
10.1002/jgrd.50171, 2013.

Cape, J. N., Coyle, M., and Dumitrean, P.: The atmospheric lifetime of black carbon, Atmos. Env., 59,
 10.1016/j.atmosenv.2012.05.030, 2012.

IPCC: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental
 Panel on Climate Change, edited by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B.,
 Tignor, M., and Miller, H. L., Cambridge University Press, United Kingdom and New York, NY, USA, 2007.

Ramanathan, V., and Carmichael, G.: Global and regional climate changes due to black carbon, Nature
 Geoscience, 1, 221-227, 2008.

Shindell, D., Kuylenstierna, J., Vignati, E., van Dingenen, R., Amann, M., Klimont, Z., Anenberg, S., Muller,
 N., Janssens-Maenhout, G., Raes, F., Schwartz, J., Faluvegi, G., Pozzoli, L., Kupiainen, K., Höglund-Isaksson, L.,
 Emberson, L., Streets, D., Ramanathan, V., Hicks, K., Oanh, N., Milly, G., Williams, M., Demkine, V., and Fowler,
 D.: Simultaneously mitigating near-term climate change and improving human health and food security,
 Science, 335, 183-189, 10.1126/science.1210026, 2012.

Mass Spectrometry of Soot From Six Different Sources Carbon-Cluster and Refractory CO₂ Signals

Joel C. Corbin¹, <u>Amewu A. Mensah¹</u>, B. Sierau¹, M. Gysel², M. Laborde², A. Keller³, J. Kim⁴, A. Petzold⁴ and U. Lohmann¹

Background

Combustion-generated particles are the most absorbing in the atmosphere. They are estimated to be the strongest anthropogenic warming agent after CO_2 [ref. 1]. Their warming effects are entangled with their atmospheric lifetime and mixing state. These two properties vary between soot sources, and during soot aging.^{1,2}

In order to improve our understanding of these processes, measurements of soot composition are required. Such measurements are useful for source apportionment and mechanistic insights. This poster discusses the composition of soot for use in future source apportionment and aging studies.

Soot-Particle Aerosol Mass Spectrometer (SP-AMS)

Fig. 1. Schematic of the SP-AMS.

● Sample aerosols are introduced and focussed into a narrow beam via an aerodynamic lens. A rotating chopper creates bursts of particles that become separated by time-of-flight through the chamber. Particles are vapourized by a metal surface (at 600°C) or a 1064 nm continuous-wave laser (absorbed by soot but not most in/organic material). The laser is switchable; if on, soot particles do not come into contact with the metal surface. After EI ionization, high-resolution mass spectrometry allows the elemental composition of ions below ~200 Th to be determined.

Experiment

Fig. 2. Experimental setup.

Laboratory setup for all samples except turbine soot. Soot aerosols were diluted before passing through a 1 m³ residence chamber with residence time ~ 30 min. Particles then flowed through two bipolar chargers before dividing the 4 L min³ sample flow equally between two DMAs, each with 5 L min³ sheath flow.

Fig. 3. Experimental setup.

Timeseries of the two most intense carbon ions observed for Regal Black soot, m/z 12 (C₁⁺) and m/z 36 (C₃⁺), during two size-selected experiments. Green **'AMS'** data are with the soot vapourization **laser OFF** (non-refractory organics volatile at 600 °C and also inorganic compounds are detected in AMS mode). Red **'SP-AMS'** data represent the same instrument, but with the soot vapourization **laser OFM**. The mean AMS signal Is not significantly different from zero.

Acknowledgements and References

The authors are grateful to Mark Johnson (Rolls Royce, UK), Theo Rindlisbacher (Federal Office of Civil Aviation, Switzerland), SR Technics (Zurich Airport, Switzerland), Paul Williams (University of Manchester, UK), and the SAMPLE-III team for their efforts and assistance in the aircraft-turbine measurements. We thank Tim B. Onasch for sharing his Independent measurements SP-AMS spectra of RB. This work was supported by the Swiss National Fund (Granit200021_132199 / 1).

Bond, T.C., Doherty, S.J., Fahey, D. W., Forster, et al., J. Geophys. Res., 2013.
 (2) Crayford, A., et al. SAMPLE III Final Report, EU Aukatian Safety Agency, 2012.
 (3) Kratschmer, W. et al. Chem. Phys. Lett., 701, 167-170.
 (4) Kuwata, M., et al. Atmos: Chem. Phys., 13, 5309-5324, 2013.
 (5) AMS organic: measurement, This Study.
 (6) Schneider, J. et al., Int. J. Mass Spectrom, 258, 37-49, 2006.

Zuberi, B. et al., Geophys. Res. Lett., 32, L01807, 2005.
 Figueiredo, J. et al. Carbon, 37, 1379-1389, 1999.
 Figueiredo, J. et al., Ind. Eng. Chem. Res., 46, 4110-4115, 2007.
 Ziol Zeikle, U et al., Carbon, 34, 983-998.

Carbon-Cluster Mass Spectrum

Soot	Abbreviation	Production
Regal Black	RB	A commercial carbon black; used for SP-AMS calibration
Airplane-turbine soot	TU	Civil aviation gas turbine ³ ; Undiluted single-point measurement behind engine
CAST "Black"	СВК	Propane-flame soot (C/O 0.25); low organic (OC) content ⁴
CAST "Brown"	CBW	• Propane-flame soot (C/O 0.41); moderate PAH content ⁵
Spark-generated soot	GFG	PALAS GFG 1000; arc discharge across graphite in argon
Fullerene-enriched soot	FS	- Commercial ${\rm C_{60}}$ and ${\rm C_{70}}$ (~6% and 1%) enriched soot^6
-		

Fig. 4. Carbon-cluster fragmentation patterns.

The carbon-cluster mass spectrum for Regal Black (RB) and Fullerene Soot (FS). This spectrum represents C_{1-16}^{+} based on the signal at integer multiples of 12. Carbon-13 isotopic peaks (${}^{13}C_1C_{x-1}^{+}$) are also shown. In general, **two types of fragmentation patterns were observed**, one extending up to large clusters (FS) and one with negligible signal above C_5^{+} (RB). The colours in Table 1 show which patterneach soot fell into.

Fig. 5. Distinguishing soots based on the two major carbon-cluster ions.

The ratio of intensities at C_1^+ and C_3^+ was also sufficient to classify these six soot types. The figure shows this ratio as a linear fit through zero.

The carbon-cluster mass spectra in Fig. 4 show that different soots have different overall mass spectra, however, >30% of the total signal was at C_1^+ and C_3^+ for all six soot types.

In ambient samples, where total mass concentration may be low, using the most intense peaks may maximize signal-to-noise.

Refractory CO₂ Signals

Fig. 5. **SP-AMS** vs **AMS** signals for RB differ by only C_x^+ and CO_x^+ .

SP-AMS data (red) and AMS data (green) were used to compare the non-refractory (volatile below 600 °C) and refractory (e.g. soot, volatile at ~4000 °C) components of RB soot.

The average hydrogen/carbon (H:C) and oxygen/carbon (0:C) ratios estimated from high-resolution mass spectrometry show that the SP-AMS and AMS differ only by C_x^+ and $CO_x^+ = CO^+ + CO_2^+).$

It is well known that functional groups at the soot surface thermally decompose into CO and CO₂ at ~1000 K [ref 8-10]. We interpret our observations as originating from the decomposition of oxidized functional groups at the soot surface. These may play a major role in the CCN activity?of aged soot.

