17th ETH-Conference on Combustion Generated Nanoparticles

23rd – 26th June, 2013

Modeling of short-term Ultrafine Particle Number Concentrations in a Swiss City

Regina E. Ducret-Stich^{1, 2}, Elisabetta Corradi², Foraster^{3, 4, 5}, Xavier Morelli⁶, Inmaculada Aguilera^{3, 4, 5}, Xavier Basagaña^{3, 4, 5}, Marcela Rivera⁷, Rémy Slama⁶, Nino Künzli^{1, 2}, Harish C. Phuleria^{1, 2}

¹ Swiss Tropical and Public Health Institute, Basel, Switzerland

² University of Basel, Switzerland

³ Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain

⁴ Universitat Pompeu Fabra (UPF), Barcelona, Spain

⁵ CIBER Epidemiologia y Salud Pública (CIBERESP), Spain

⁶ Inserm and University J. Fourier Grenoble, Grenoble, France

⁷ Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Canada

EXTENDED SUMMARY

Traffic noise and air pollution exposure models are usually built on similar traffic-related and land use predictors, which may lead to misinterpretation of air pollution and noise effects on cardiovascular health. As spatial distribution of road traffic noise and air pollution differs significantly across different urban areas, city-specific analyses are required to disentangle these effects. This is the aim of the project TRITABS (Projet Tri-national Trafic, Air, Bruit et Santé), which looks at traffic air pollution, noise and cardiovascular health in three European cities: Basel (CH), Girona (ES) and Grenoble (FR).

The focus of this paper is on the spatial distribution and modeling of ultrafine particles in the urban area of Basel.

20-minutes measurements of particle number concentration (PN) and traffic volume were collected at 60 locations across the city of Basel during non-rush hour (9:30-16:00h) and repeated in three seasons (spring, summer and winter) in 2011. PN was collected using a portable particle counter, miniDiSC (miniature diffusion size classifier, Matter Aerosol, CH), which measures ultrafine particles in a 10-300 nm range. For each monitoring location detailed spatial characteristics were recorded and potential predictor variables were derived using geographic information systems (GIS). During the whole study period PN was measured continuously at a fixed federal monitoring station (NABEL, Basel/Binningen) with a condensation particle counter (CPC 3775). Multivariate linear regression models were built for predicting PN concentrations in Basel using the NABEL measurements and different combinations of spatial characteristic, GIS, meteorological and time variables.

Average PN levels by season and site type are listed in Table 1. In general, 20-min median levels were lower than mean levels, with the highest concentrations in winter and the lowest in summer. Average PN levels at street sites were higher compared to urban, regional and NABEL sites.

-		20-min M	ledian PN	l (#/cm³))		20-min Mean PN (#/cm ³)					
	N	Mean (NABEL)	StdDev	Min	Max	N	Mean (NABEL)	StdDev	Min	Max		
Season												
Spring	57	13'600 (13'100)	6'100	4'900	32'200	57	15'800 (13'300)	7'500	5'200	36'800		
Summer	59	8'800 (8'200)	4'400	3'600	24'100	59	11'500 (8'400)	7'300	3'900	41'500		
Winter	59	17'000 (13'200)	12'600	1'100	53'100	59	20'000 (13'500)	13'900	1'600	57'500		
Site type												
Street	122	14'700 (12'000)	9'100	1'600	53'100	122	17'800 (12'300)	10'500	1'700	57'500		
Urban	45	9'900 (10'100)	8'600	1'100	50'500	45	11'300 (10'200)	10'000	1'600	50'500		
Regional	8	9'000 (11'400)	5'300	2'200	17'800	8	9'800 (11'600)	5'700	2'400	18'000		

Table 1: Summary statistics for median and mean of 20-min measurements by season and by site type

Table 2: Performance of the different models for median and mean PN concentrations

	Median PN				Mean PN				
Model	Model R ²	Adj. Model R ²	RMSE	Mean Bias	Model R ²	Adj. Model R ²	RMSE	Mean Bias	
GIS, season	0.58	0.56	6400	-1100	0.48	0.47	8200	-1700	
GIS, meteo, season	0.60	0.58	6200	-1100	0.49	0.48	8100	-1700	
GIS, meteo, time, season	0.63	0.61	5900	-1000	0.57	0.55	7600	-1300	
Characteristics, season	0.63	0.61	6200	-1000	0.59	0.57	7700	-1200	
Characteristics, meteo, season	0.64	0.62	5900	-1000	0.60	0.58	7700	-1200	
Characteristics, meteo, time, season	0.65	0.63	5300	-900	0.65	0.62	7000	-1000	
All variables	0.68	0.66	5300	-900	0.67	0.65	6600	-900	

RMSE: root mean squared error

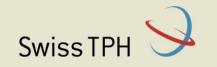
Model R²s for log transformed PN; RMSE and bias back transformed to PN

Model performance for predicting median and mean PN concentrations are listed in Table 2. Models for median PN generally performed better than models for mean PN concentrations. For median PN, model performance using only GIS or only characteristic variables was almost the same. In contrary, for mean PN predictions using only site characteristic variables improved the model performance compared to models using only GIS variables. The most important predictor for all models was the background (NABEL) PN concentration explaining 50% in the median and 38% in the mean models. For the GIS models "Distance to main road" explained an additional 5% and 8% in the median and mean models, respectively. For the characteristics models additional common contributions differed between median and mean models with "site / neighborhood type" (6%) and "Total traffic flow" (9%), respectively.

We could show that short-term PN levels in Basel could be moderately predicted with models using GIS-derived traffic and land-use variables and/or spatial characteristic variables. The representativeness of these short-term predictions for longer-term (hourly, daily) PN exposures will be additionally examined.

Swiss Tropical and Public Health Institute Schweizerisches Tropen- und Public Health-Institut Institut Tropical et de Santé Publique Suisse

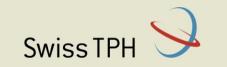
Associated Institute of the University of Basel


Epidemiology and Public Health Environmental Exposures and Health

ETH Conference on Combustion Generated Nanoparticles, June 23-26, 2013

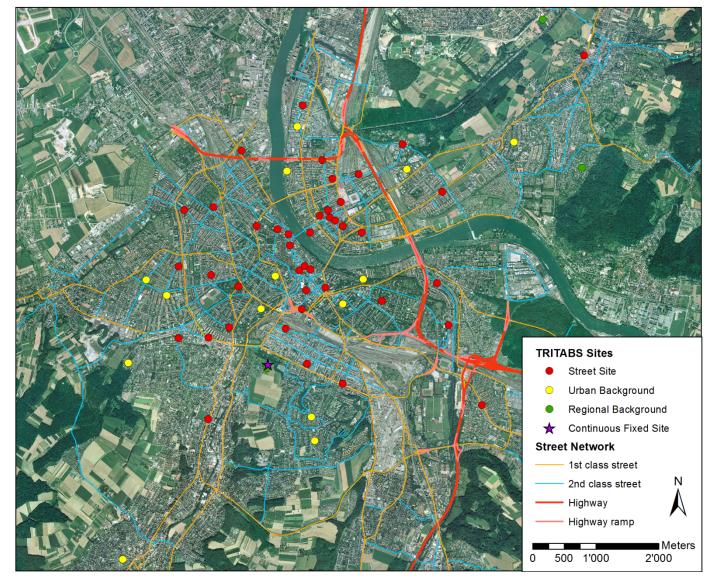
Modeling of Short-Term Ultrafine Particle Number Concentrations in a Swiss City

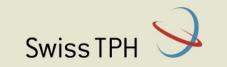
<u>Regina E. Ducret-Stich</u>, Elisabetta Corradi, Maria Foraster, Xavier Morelli, Inmaculada Aguilera, Xavier Basagaña, Marcela Rivera, Rémy Slama, Nino Künzli, Harish C. Phuleria



TRITABS - Projet Tri-national de Trafique, Air, Bruit et Santé

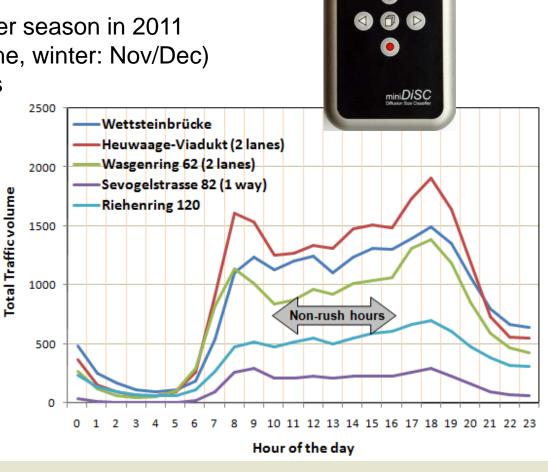
- Description, comparison, and spatial characteristics of traffic related air pollution and noise in Basel, Grenoble and Girona
- Investigate the association between ambient noise levels and blood pressure in Basel and Girona (controlling for traffic related air pollution)


- Measurements: ultrafine particles (UFP), traffic flow and noise
- Models: UFP, noise

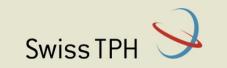


60 measuring sites (Including 20 SAPALDIA sites with concurrent UFP measurements)

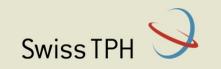
1 continuous background site (NABEL)



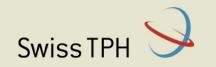
UFP Measurements in Basel

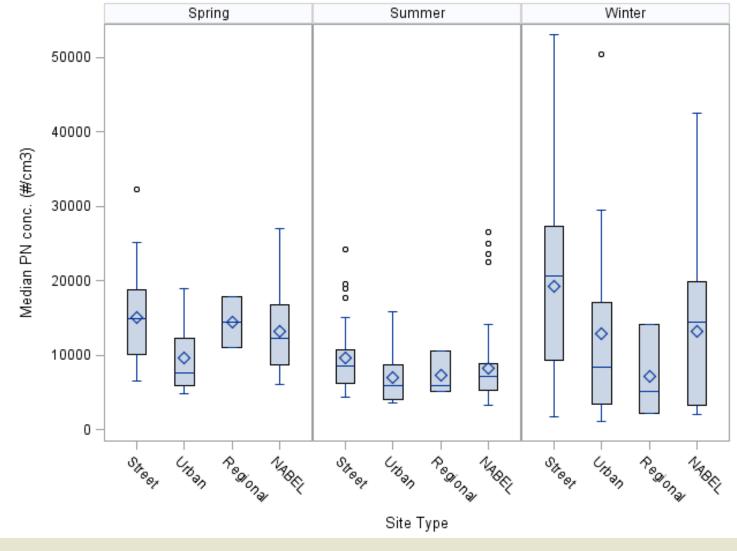


 Measurement device: miniDisc (Matter Aerosol, CH) 1-sec data on particle number, size & surface area (size range 10-300nm)
 One 20-min measurement per season in 2011 (spring: Mar/Apr, summer: June, winter: Nov/Dec) total: 175 valid measurements
 Measurements taken during working day non-rush


hours (between 9:30 and 16:30)

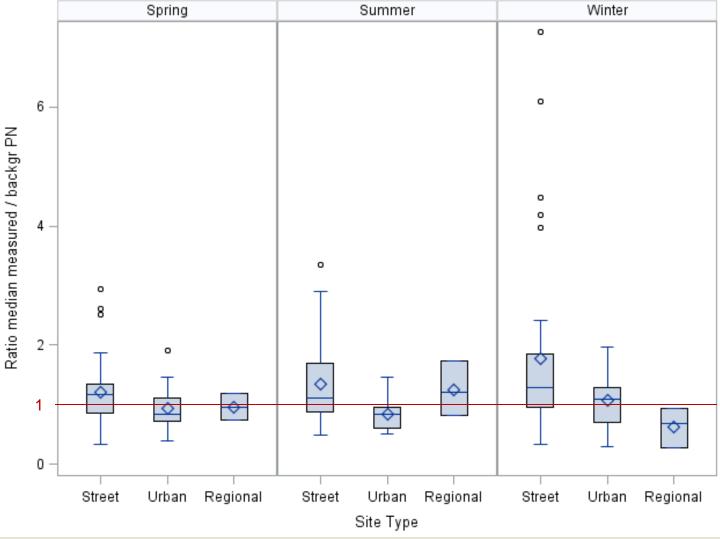
Measuring Sites in Basel



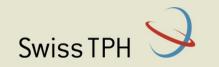



Samples of site characteristics

Site characteristics	
Both sides of the street have buildings	88%
Neighborhood type: multi family houses & densely built area with homes, stores and offices	82%
Median street width	8m (range 4-27m)
Traffic in both directions	73%
Parking lane in the street	42%
Sites with bus lines	33%
Sites with tram lines	42%
•••	

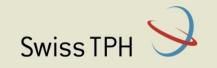


Measured 20-min median particle number (PN) concentration



Ratio of measured / background (NABEL) median PN

UFP Models in Basel

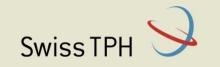


Modeling approach:

- Multivariate linear regression
- Supervised stepwise forward selection (0.01 increase in R², direction of effect physically predefined, p<0.05)
- Used **log transformed** measured PN (measuring sites and NABEL)
- Models for median PN and mean PN
- Leave one site out cross validation

Different models (incl. NABEL measurements & season in all models):

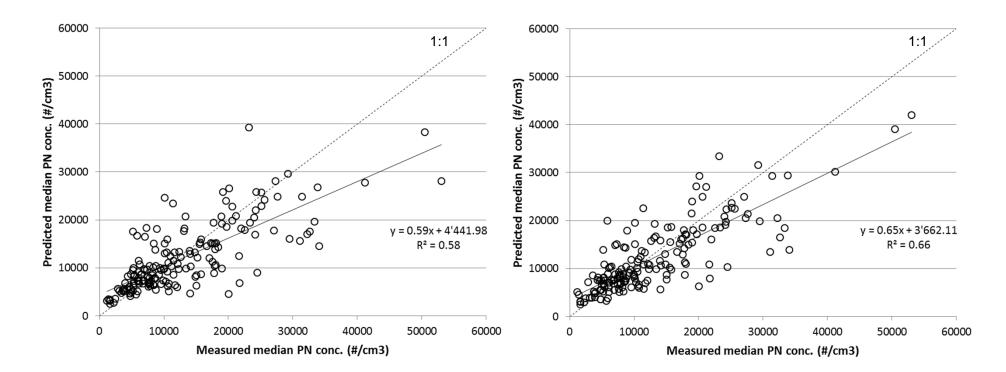
- Only GIS variables: (1) GIS, (2) GIS & meteo, (3) GIS, meteo & time
- Only Characteristic variables:
 (1) Char, (2) Char & meteo, (3) Char, meteo & time
- GIS & Characteristic variables

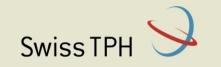


Models for median PN

Model	Variables	Model R ²	Adj. Model R ²	RMSE	Mean Bias
GIS, season	<pre>log_median_NABEL_PN, Distance to main road, GIS_FIELDS4000m, Season</pre>	0.58	0.56	6400	-1100
GIS, meteo, season	log_median_NABEL_PN, Distance to main road, Temperature, Wind speed, Population density_200m	0.60	0.58	6200	-1100
GIS, meteo, time, season	<pre>log_median_NABEL_PN, Distance to main road, sin_hour, cos_hour, GIS_FIELDS4000m, Temperature</pre>	0.63	0.61	5900	-1000
Characteristics, season	log_median_NABEL_PN, Stop signs, Car flow, Lowest hight of buildings, Inclination, Traffic direction, Season	0.63	0.61	6200	-1000
Characteristics, meteo, season	<pre>log_median_NABEL_PN, Site type, Temperature, Motorcycle flow, Stop signs, Wind speed, Traffic direction</pre>	0.64	0.62	5900	-1000
Characteristics, meteo, time, season	<pre>log_median_NABEL_PN, Neighbourhood type, sin_hour, cos_hour,Temperature, Motorcycle flow, Gaps</pre>	0.65	0.63	5300	-900
All variables	<pre>log_median_NABEL_PN, Neighbourhood type, sin_hour, cos_hour, Temperature, GIS_FIELDS4000m, Motorcycle flow, Gaps, GIS_RESIDENT1000</pre>	0.68	0.66	5300	-900

Model R²s for log_median_PN; Root mean squared error (RMSE) and bias back transformed to PN


UFP Models in Basel



Predicted vs. measured concentration for median PN

Model: GIS, meteo & time

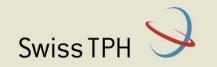
Model: Characteristics, meteo & time

		Mediar	PN		Mean PN				
Model	Model R ²	Adj. Model R ²	RMSE	Mean Bias	Model R ²	Adj. Model R ²	RMSE	Mean Bias	
GIS, season	0.58	0.56	6400	-1100	0.48	0.47	8200	-1700	
GIS, meteo, season	0.60	0.58	6200	-1100	0.49	0.48	8100	-1700	
GIS, meteo, time, 0.6		0.61	5900	-1000	0.57	0.55	7600	-1300	
season									
Characteristics, season	0.63	0.61	6200	-1000	0.59	0.57	7700	-1200	
Characteristics, meteo,	0.64	0.62	5900	-1000	0.60	0.58	7700	-1200	
season	0.01	0.02	0000	1000	0.00	0.00	1100	1200	
Characteristics, meteo,	0.65	0.63	5300	-900	0.65	0.62	7000	-1000	
time, season	0.00	0.00	0000	500	0.00	0.02	1000	1000	
All variables	0.68	0.66	5300	-900	0.67	0.65	6600	-900	

Comparison median vs. mean PN models

Main predictors:

- Log NABEL PN (50%)
- GIS: Distance to main road (5%)
- Char: Site/neighborhood type (6%)
- Log NABEL PN (38%)
- GIS: Distance to main road (8%)
- Char: Total vehicle flow (9%)


Summary & Outlook

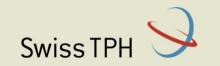
- PN concentrations were higher in winter and at street sites
- Models using GIS and / or site characteristic variables could reasonably well predict short-term PN concentrations
- For median PN models performance was the same for GIS or site characteristics
- For mean PN models performance was better for site characteristics
- Background PN concentration was the main predictor for all models
- Second important predictors were "Distance to main road" for GIS models, "site/neighborhood type" for characteristics median models, and "Total vehicle flow" for characteristics mean models

Outlook

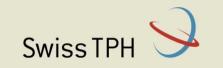
Validating these short-term measurements / models for "longer" terms (hourly, daily) with concurrent SAPALDIA measurements

THANK YOU

Regina Ducret-Stich, Elisabetta Corradi, Harish Phuleria, Nino Künzli


Maria Foraster, Inmaculada Aguilera, Xavier Basagaña

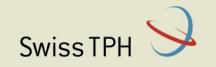
Xavier Morelli, Rémy Slama


June 25, 2013

regina.ducret@unibas.ch

Marcela Rivera

Additional slides


MiniDisc (Miniature Diffusion Size Classifier)

Number concentration & average diameter (size range 10-300nm)

Principle of operation: Unipolar diffusion, current detection

Time resolution:1 secondSize:45×80×500mmWeight:~1kgBattery life:36hCompany:Matter AerosolWohlen,
Switzerland

Models for mean PN

Model	Variables	Model R ²	Adj. Model R ²	RMSE	Mean Bias
GIS, season	<pre>log_mean_NABEL_PN, Distance to main road, Season, GIS_FIELDS4000m</pre>	0.48	0.47	8200	-1700
GIS, meteo, season	<pre>log_mean_NABEL_PN, Distance to main road, Wind speed Temperature,</pre>	0.49	0.48	8100	-1700
GIS, meteo, time, season	<pre>log_mean_NABEL_PN, Distance to main road, sin_hour, cos_hour, Wind speed, GIS_FIELDS4000m, Season</pre>	0.57	0.55	7600	-1300
Characteristics, season	log_mean_NABEL_PN, Total vehicle flow , Lowest hight of buildings, Gaps, Inclination, Season, Motorcycle flow, Distance miniDisc to street	0.59	0.57	7700	-1200
Characteristics, meteo, season	log_mean_NABEL_PN, Total vehicle flow , Lowest hight of buildings, Gaps, Inclination, Distance miniDisc to street, Motorcycle flow, Temperature	0.60	0.58	7700	-1200
Characteristics, meteo, time, season	log_mean_NABEL_PN, Total vehicle flow, sin_hour, cos_hour, Gaps, Neighbourhood type, Motorcycle flow, Season, Mean lowest hight of buildings, Distance miniDisc to street	0.65	0.62	7000	-1000
All variables	log_mean_NABEL_PN, Total vehicle flow, sin_hour , cos_hour, Lowest hight of buildings, Gaps, GIS_WATER4000m, Motorcycle flow, GIS_OTHER500m, Season	0.67	0.65	6600	-900

Model R²s for log_mean_PN; Root mean squared error (RMSE) and bias back transformed to PN