Real-time Measurements of Metallic Ash Emissions from Engines

David Kittelson, Udayan Patwardhan, Darrick Zarling, David Gladis, and Winthrop Watts,

> Center for Diesel Research Department of Mechanical Engineering University of Minnesota

17th ETH-Conference on Combustion Generated Nanoparticles June 23rd – 26th 2013

Real time ash measurements Outline

Introduction

- Why do we care about ash?
- How do they form
 - Metals in lube oil typically 0.5% metal, Ca, Zn, Mg,...
 - Wear metals
- Structure and size
- Oil consumption pathways
- Method
- Initial engine results
- Calibration experiments
- New issues
- Conclusions

Importance of ash emissions

- Diesel engines build-up and plugging of DPF
 - Increased pressure drop eventually
 - Reduction of useful filter life, increased cleaning frequency
- Gasoline engines
 - Deposition in 3-way catalyst leads to poisoning
 - Same issues as diesel if GPF used
 - Solid nanoparticle emissions if GPF not used, especially with metallic additives
- Relationship to engine lube oil consumption mechanisms

InletMidOutletAsh distribution in exhaust filter channels(Heibel and Bhargava, 2007)

3-way catalyst poisoning by ash deposits (Franz, et al., 2005)

Particle formation history – 2 s in the life of an engine exhaust aerosol

Kittelson, D. B., W. F. Watts, and J. P. Johnson 2006. "On-road and Laboratory Evaluation of Combustion Aerosols Part 1: Summary of Diesel Engine Results," Journal of Aerosol Science 37, 913–930.

Center for Diesel Research

Engine ash emissions

Jung, et al., 2005

Sappok and Wong, 2007

- Non-combustible fraction of diesel aerosol
- Derived from metallic lube oil additives and engine wear metals
- Metallic particles tend to 'decorate' carbonaceous exhaust particles
- But form separate particles at sufficiently high metal to soot ratios

Catalytic stripper measurements - nuclei mode usually volatile but shows nonvolatile (ash) core at light load 4.5 liter Tier 4 offroad diesel engine

Catalytic stripper measurements - nuclei mode usually volatile but shows nonvolatile (ash) core at light load 4.5 LTier 4 offroad diesel engine

Mass and number emissions and standards

Mass Emissions (mg/kWh)

Mass and number emissions and standards – note the impact of counting all the ash

Mass Emissions (mg/kWh)

Typical engine exhaust particle size distribution by mass, number and surface area

Outline

- Introduction
 - Why do we care about ash?
 - How do they form
 - Metals in lube oil typically 0.5% metal, Ca, Zn, Mg,...
 - Wear metals
 - Structure and size
 - Oil consumption pathways

• Method

- Initial engine results
- Calibration experiments
- New issues
- Conclusions

High temperature oxidation method (HTOM) overview

Diesel exhaust or other metallic ash containing aerosol

Stable metal oxides and other refractory metal compounds are formed or survive high temperature tube furnace

Outline

- Introduction
 - Why do we care about ash?
 - How do they form
 - Metals in lube oil typically 0.5% metal, Ca, Zn, Mg,...
 - Wear metals
 - Structure and size
 - Oil consumption pathways
- Method
- Initial engine results
- Calibration experiments
- New issues
- Conclusions

Engine exhaust apparatus

Engine exhaust measurements: volume weighted size distributions

Transient ash emissions

Outline

- Introduction
 - Why do we care about ash?
 - How do they form
 - Metals in lube oil typically 0.5% metal, Ca, Zn, Mg,...
 - Wear metals
 - Structure and size
 - Oil consumption pathways
- Method
- Initial engine results
- Calibration experiments
- New issues
- Conclusions

Spray calibration system with thermal precipitator for collection of TEM samples

Thermal Precipitator

Lube oil spray results: evaporation and oxidation of specially blended lube oils

Lube oil spray results: composition of specially blended lube oils and ash survival fraction

	Base stock				
	104A	101A	100A	103A	102A
B	<5	<5	<5	285	<5
Ca	<2	<2	3946	<2	3724
Mg	<2	<2	8	~500	<2
Р	2	976	1052	<10	13
S	55	1998	802	57	8804
Zn	<5	1008	<5	<5	<5

Oil composition, ppm, mass

Ash compound survival fraction

			_	Metallic Volume Fraction		_
			Concentration			
Blend #	Element	Compound	[ppm]	Expected	Measured	Measured/Expected
100A	Ca	CaCO3	3946	2.9E-03	7.3E-03	2.51
101A	Zn	ZnSO4	1008	5.9E-04	9.6E-06	0.02
102A	Ca	CaSO4	3724	3.4E-03	7.2E-03	2.10
103A	Mg	MgCO3	500	5.3E-04	7.8E-04	1.48

What happened to the zinc compounds? Why is survival fraction so high for Ca and Mg?

Engine lube oil spray TEMs

TEMs from engine oil ash, very small particles, leftover from decorated soot

Outline

- Introduction
 - Why do we care about ash?
 - How do they form
 - Metals in lube oil typically 0.5% metal, Ca, Zn, Mg,...
 - Wear metals
 - Structure and size
 - Oil consumption pathways
- Method
- Initial engine results
- Calibration experiments
- New issues
- Conclusions

New setup for transient ash measurements

Transient ash measurements during speed ramps at heavy and light loads

Center for Diesel Research

Real time black carbon and real time ash show similar time response

- This is reasonable as we expect much of the ash to be decorating soot particles (black carbon)
- But it could also mean that there is carbon breakthrough, incomplete oxidation of particles
- Concentrations of ash downstream of oven are very low so downstream ash measurements are challenging
- Measured carbon breakthrough with LII instrument

Black carbon measured downstream of oven using Artium LII300 during temperature ramp

Further tests show no carbon breakthrough on load transient

- Carbon breakthrough, interference solved using 1150 C
- New spray calibration experiments with pure salts
 - CaSO₄, MgSO₄, ZnSO₄, Zn₃(PO₄)₃
 - Zinc compounds show higher losses than Ca, Mg?
- Tests with new oils
- Steady state and transient ash emissions

Outline

- Introduction
 - Why do we care about ash?
 - How do they form
 - Metals in lube oil typically 0.5% metal, Ca, Zn, Mg,...
 - Wear metals
 - Structure and size
 - Oil consumption pathways
- Method
- Initial engine results
- Calibration experiments
- New issues
- Conclusions

Conclusions

- We have developed a method that allows us to measure exhaust ash emissions from engines in near real time.
- Results suggest significant ash emission during engine transients, both up and down in load and speed

Acknowledgements

- We would like to thank BP and Corning for their support of this work.
- The work was also partially supported by internal funding from the U of M

Questions

Background work

- Kim, J. (2005). High Temperature Oxidation Method for Real-Time Measurement of Metallic Ash in Diesel Exhaust, Plan B Paper in Partial Fulfillment of the Degree of Master of Science, University of Minnesota.
- Filice, M.,, W. F. Watts and D. B. Kittelson 2007. Near Real-Time Ash Measurement: A Preliminary Study. Extended Abstract, Poster prepared for Seminar on Industrial Emissions and Immissions: New Problems Caused By Ultrafine Particulate. 11th International Trade Fair of Material & Energy Recovery and Sustainable Development, November 7-10, 2007, Rimini, Italy.
- Apple, James, David Gladis, Winthrop Watts, and David Kittelson, 2009. "Measuring Diesel Ash Emissions and Estimating Lube Oil Consumption Using a High Temperature Oxidation Method," *SAE Int. J. Fuels Lubr*. 2(1): 850-859, 2009, also SAE paper number 2009-01-1843.
- Gladis, David Daniel, A Real-time Method for Making Engine Exhaust Ash Measurements, University of Minnesota, M.S. Thesis, September 2010

New results, upstream and downstream number concentration, downstream size distribution

