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Importance of ash emissions

• Diesel engines - build-up and 
plugging of DPF
– Increased pressure drop -

eventually
– Reduction of useful filter life, 

increased cleaning frequency
• Gasoline engines

– Deposition in 3-way catalyst 
leads to poisoning

– Same issues as diesel if GPF 
used

– Solid nanoparticle emissions if 
GPF not used, especially with 
metallic additives

• Relationship to engine lube oil 
consumption mechanisms

Ash distribution in exhaust filter channels 
(Heibel and Bhargava, 2007)

3-way catalyst poisoning by ash deposits
(Franz, et al., 2005)
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Particle formation history – 2 s in the life of 
an engine exhaust aerosol

Kittelson, D. B., W. F. Watts, and J. P. Johnson 2006.  “On-road and Laboratory Evaluation of Combustion 
Aerosols Part 1: Summary of Diesel Engine Results,” Journal of Aerosol Science 37, 913–930.
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Engine ash emissions

Sappok and Wong, 2007

• Non-combustible fraction of diesel aerosol
• Derived from metallic lube oil additives and 

engine wear metals
• Metallic particles tend to ‘decorate’ 

carbonaceous exhaust particles
• But form separate particles at sufficiently 

high metal to soot ratios
Jung, et al., 2005

Jung and Kittelson, 2005
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Catalytic stripper measurements - nuclei mode usually 
volatile but shows nonvolatile (ash) core at light load
4.5 liter Tier 4 offroad diesel engine
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Catalytic stripper measurements - nuclei mode usually 
volatile but shows nonvolatile (ash) core at light load
4.5 LTier 4 offroad diesel engine
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Mass and number emissions and standards
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Mass and number emissions and standards – note 
the impact of counting all the ash
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Typical engine exhaust particle size distribution by 
mass, number and surface area
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Nuclei Mode - Usually 
forms from volatile 
precursors as exhaust 
dilutes and cools

Accumulation Mode - Usually 
consists of carbonaceous 
agglomerates and adsorbed material 

Coarse Mode - Usually 
consists of reentrained 
accumulation mode particles, 
crankcase fumes

PM10
Dp < 10 µm

In some cases this 
mode may consist of 
very small particles 
below the range of 
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 2
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Most of the ash usually 
found in decorated 
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A solid ash core may exist 
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High temperature oxidation method (HTOM) 
overview
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Tube Oven
(1 LPM)

CAI Analyzer
Raw NO

Horiba NO Analyzer
Dilute NO

Engine 
Exhaust

Vent
Ejector pump 
diluter with critical 
orifice

Supply Air

Oven Temperature 
Logger

Thermocouple
Wires

SMPS

SMPS

Other 
instruments, 
EAD, EEPS

Engine exhaust apparatus

Gladis, 2010



Center for Diesel Research

Engine exhaust measurements: volume weighted size 
distributions
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Transient ash emissions
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Spray calibration system with thermal precipitator 
for collection of TEM samples

Thermal Precipitator
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Lube oil spray results: evaporation and oxidation of 
specially blended lube oils
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Lube oil spray results: composition of specially 
blended lube oils and ash survival fraction

Base stock
104A 101A 100A 103A 102A

B <5 <5 <5 285 <5
Ca <2 <2 3946 <2 3724
Mg <2 <2 8 ~500 <2
P 2 976 1052 <10 13
S 55 1998 802 57 8804
Zn <5 1008 <5 <5 <5

Blend # Element Compound
Concentration 

[ppm] Expected Measured Measured/Expected
100A Ca CaCO3 3946 2.9E-03 7.3E-03 2.51
101A Zn ZnSO4 1008 5.9E-04 9.6E-06 0.02
102A Ca CaSO4 3724 3.4E-03 7.2E-03 2.10
103A Mg MgCO3 500 5.3E-04 7.8E-04 1.48

Metallic Volume Fraction

Oil composition, ppm, mass

Ash compound survival fraction

What happened to the zinc compounds?
Why is survival fraction so high for Ca and Mg?

Gladis, 2010
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Engine lube oil spray TEMs

Ca

Ca, Mg
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TEMs from engine oil ash, very small particles, 
leftover from decorated soot
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New setup for transient ash measurements

Engine Dyno

Dilution 
Tunnel

Exhaust

Intake

MicroSoo
t

FTIR

Oven

EEPS

1100 °C, 1 lpm

LFE
HEPA

8 lpm

Gas 
Analyzer

PC

Dilution Air
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Transient ash measurements during speed 
ramps at heavy and light loads
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Real time black carbon and real time ash show 
similar time response

• This is reasonable as we expect much of the ash to be 
decorating soot particles (black carbon)

• But it could also mean that there is carbon 
breakthrough, incomplete oxidation of particles

• Concentrations of ash downstream of oven are very 
low so downstream ash measurements are 
challenging

• Measured carbon breakthrough with LII instrument



Center for Diesel Research

Black carbon measured downstream of oven using 
Artium LII300 during temperature ramp
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Further tests show no carbon breakthrough on load 
transient
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Moving forward

• Carbon breakthrough, interference - solved using 
1150 C

• New spray calibration experiments with pure salts
– CaSO4, MgSO4, ZnSO4, Zn3(PO4)3

– Zinc compounds show higher losses than Ca, Mg?

• Tests with new oils
• Steady state and transient ash emissions
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Conclusions

• We have developed a method that allows us to 
measure exhaust ash emissions from engines in near 
real time.

• Results suggest significant ash emission during 
engine transients, both up and down in load and speed



Center for Diesel Research

Acknowledgements

• We would like to thank BP and Corning for their 
support of this work. 

• The work was also partially supported by internal 
funding from the U of M



Center for Diesel Research

Questions
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New results, upstream and downstream number 
concentration, downstream size distribution
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