17th ETH-Conference on Combustion Generated Nanoparticles June 23th – 26th 2013

Extended Paper-Abstract

Name of Author Harish Phuleria^{1,2}

Co-Authors Ming Yi Tsai^{1,2}, Martina S. Ragettli^{1,2}, Elisabetta Corradi², Alex Ineichen^{1,2}, Thierry Rochat³, Nicole Probst-Hensch^{1,2}, Martin Fierz^{4,5}, Nino Künzli^{1,2}

Affiliation ¹Swiss Tropical and Public Health Institute, Basel, Switzerland; ²University of Basel, Switzerland; ³University Hospital, Geneva,

Switzerland; ⁴Institute for Aerosol and Sensor Technology, FHNW,

Windisch, Switzerland; ⁵naneos particle solutions gmbh, Windisch, Switzerland

Mailing address Socinstrasse 57, 4051, Basel, Switzerland Phone / Fax 061 284 8310/ 061 284 8105, E-mail harish.phuleria@unibas.ch

Title: Spatiotemporal variation of particle number and surface area concentration in four Swiss areas and its relationship with mass measurements

Extended Abstract:

Background: This study is part of the Swiss Study on Air Pollution and Lung and Heart Diseases in Adults (SAPALDIA), a cohort study initiated in 1990 and spread across eight geographically diverse areas in Switzerland. Innovative exposure modeling has been conducted in SAPALDIA earlier for PM_{10} and NO_2 , however, exposure to specific traffic related pollutants such as ultrafine particles and PM constituents has not been assessed.

Aims: The overarching aim is to provide the estimates of individual long-term outdoor traffic-related air pollution exposures of the cohort participants. This paper focuses on the spatial and temporal variation of home outdoor particle number (PN) and lung-deposited surface area (LDSA) concentration in four study areas: Basel, Geneva, Lugano and Wald.

Methods: Weekly/biweekly outdoor (as well as indoor) PN and LDSA are measured at 20 residences each in four study areas in three seasons over a period of 2 years, 2011-2012. PN and LDSA are measured using a portable particle counter, miniDiSC (miniature diffusion size classifier). It is a portable diffusion charging based device and measures nanometer sized (10-300nm) particles with a time-resolution of one second.

Results: Mean(±SD) weekly outdoor PN levels aggregated across all seasons and sites are 11000±3700, 15400±8300, 15700±7400 and 5600±3500 particles/cm³ in Basel, Geneva, Lugano and Wald, respectively. Corresponding LDSA values are 31.7±9.5, 36.1±22.2, 44.5±16.5 and 16.7±8.4 μ m²/cm³ respectively for the four study areas. As show in table 1, PN and LDSA are highest in winter and lowest in summer for all study areas/sites (LDSA distribution shown in Figure 1). PN levels show a clear morning and evening rush hour in all seasons in all sites, but more prominently at street sites. PN & LDSA show reasonably moderate to good correlation with NO₂ and soot (measured as black smoke) within all areas but moderate to low correlation with PM10 and PM2.5 in all seasons (see Table 2). Summer correlations are generally lower than winter and LDSA, shows higher correlations with all the pollutants than particle number.

Table 1. Summary of UFP measurements by season and study area

Pollutant	Area* –	Season				
Pollutant	Area –	Winter	Spring	Summer		
	Basel	13200 ± 2800	12400 ± 1800	7500 ± 1500		
Particle	Geneva	21400 ± 6900	11500 ± 3700	13300 ± 2900		
Number (#/cm ³)	Lugano	21100 ± 6600	12000 ± 3000	9800 ± 2000		
	Wald	7000 ± 3100	5400 ± 1300	4400 ± 900		
Particle Diameter (µm)	Basel	62.2 ± 7.2	51.0 ± 3.2	51.2 ± 4.7		
	Geneva	43.7 ± 9.5	48.8 ± 6.3	47.2 ± 3.2		
	Lugano	58.8 ± 7.0	52.0 ± 3.5	55.8 ± 3.7		
	Wald	59.0 ± 8.4	52.4 ± 4.2	71.9 ± 11.1		
Lung Deposited Surface Area (µm²/cm³)	Basel	42.4 ± 8.2	32.8 ± 3.5	20.0 ± 3.2		
	Geneva	48.5 ± 19.8	27.9 ± 7.3	32.0 ± 6.8		
	Lugano	75.0 ± 14.0	30.9 ± 5.7	27.6 ± 6.5		
	Wald	19.9 ± 7.3	14.3 ± 2.9	15.9 ± 2.8		

* A maximum of 20 SAP3 households were monitored per each study area/season

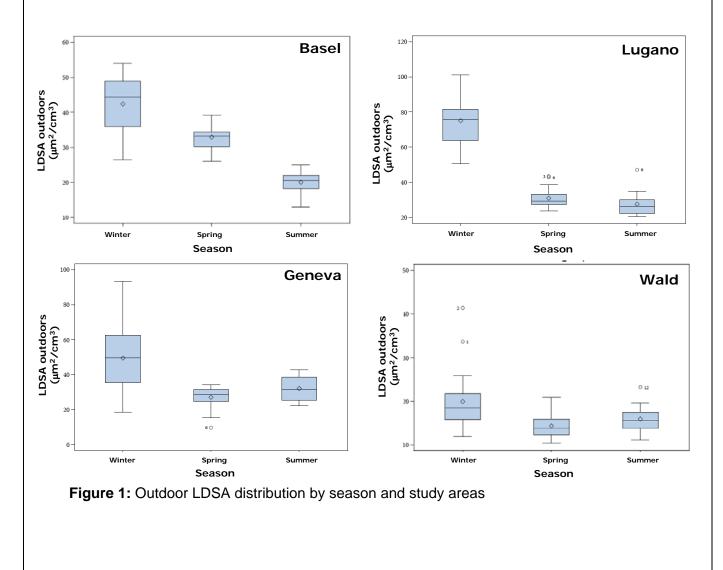


Table 2. Pearson correlations among different measured pollutants

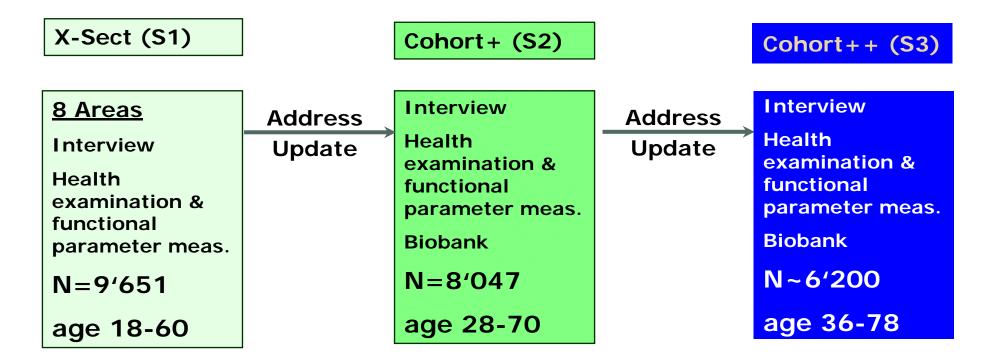
Area	Variable	PM ₁₀	PM _{2.5}	BS _{2.5}	NO ₂	PN
Basel	PM _{2.5}	0.97	1			
	BS _{2.5}	0.92	0.94	1		
	NO ₂	0.69	0.68	0.80	1	
	PN	0.65	0.63	0.72	0.72	1
	LDSA	0.86	0.84	0.87	0.76	0.89
	PM _{2.5}	0.87	1			
	BS _{2.5}	0.52	0.68	1		
Wald	NO ₂	0.34	0.53	0.91	1	
	PN	0.23	0.30	0.71	0.83	1
	LDSA	0.44	0.55	0.80	0.81	0.85
	PM _{2.5}	0.98	1			
Lugano	BS _{2.5}	0.89	0.90	1		
	NO ₂	0.71	0.68	0.90	1	
	PN	0.84	0.86	0.92	0.87	1
	LDSA	0.91	0.93	0.94	0.84	0.96
Geneva	PM _{2.5}	0.91	1			
	BS _{2.5}	0.73	0.82	1		
	NO ₂	0.49	0.52	0.58	1	
	PN	0.26	0.45	0.56	0.67	1
	LDSA	0.49	0.67	0.69	0.60	0.89

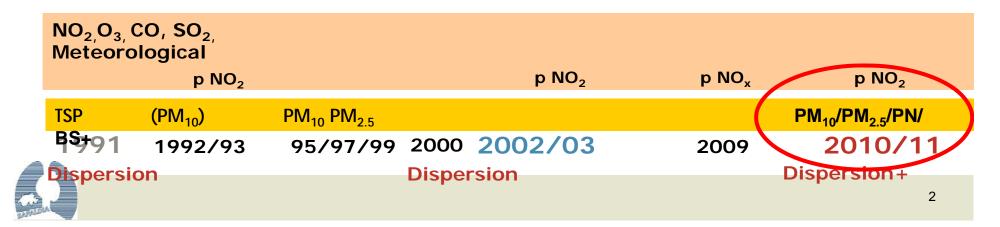
Conclusions: Our results show significant seasonal and spatial variation in home outdoor ultrafine particles within and between study areas and document the differential impact of traffic on them in Switzerland.

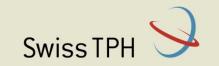
Swiss Tropical and Public Health Institute Schweizerisches Tropen- und Public Health-Institut Institut Tropical et de Santé Publique Suisse Department of Epidemiology & Public Health Exposure Science Group

Spatiotemporal variation of particle number & surface area concentration in four Swiss areas & its relationship with mass measurements

Harish C. Phuleria, Ming Yi Tsai, Martina S. Ragettli, Elisabetta Corradi, Alex Ineichen, Nicole Probst-Hensch, Nino Künzli Swiss Tropical and Public Health Institute, Basel; University of Basel, Basel

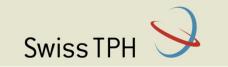

Martin Fierz IAST, FHNW, Windisch; naneos particle solutions gmbh, Windisch, Switzerland

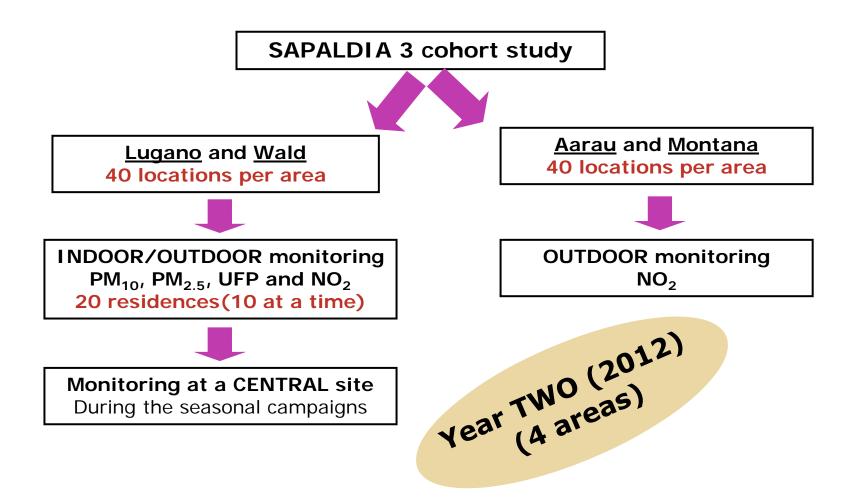

Thierry Rochat University Hospital, Geneva, Switzerland


26.June.2013 ETH CGN conference, Zürich, Switzerland

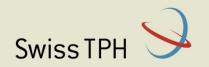
Swiss Cohort study on Air Pollution and Health in Adults TDH SAPALDIA (...a prospective cohort study)

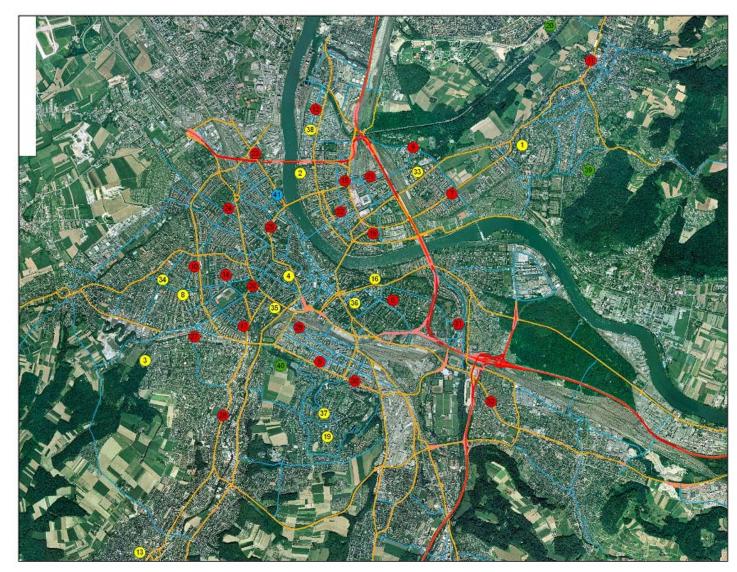
SAPALDIA study areas/subjects


Specific Research Qs:


- What are the long-term exposure levels to traffic air pollution among general Swiss population?
- How does the traffic PM including UFP, PM2.5, and other PM2.5 components such as soot and trace elements vary within and across the eight SAPALDIA areas?

Study design




- Year 1 measurements (BS, GE, DA, PA) completed in 2011
- Year 2 measurements (LU, WA, AA, MO) completed in 2012

Monitoring locations (e.g. Basel)

- 20 sites with PM_x + UFP + NO₂, indoors
 & outdoors
- Additional 20 sites with outdoor NO₂ monitoring
- PM_x sites are SAPALDIA subject homes

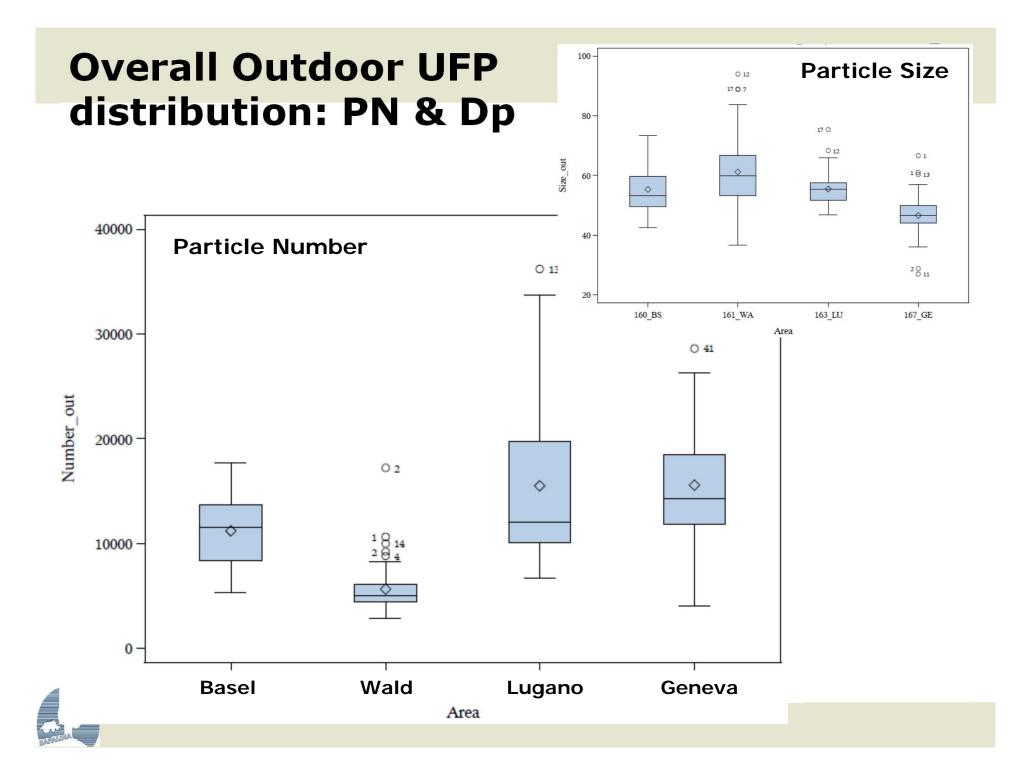
Monitoring Methods

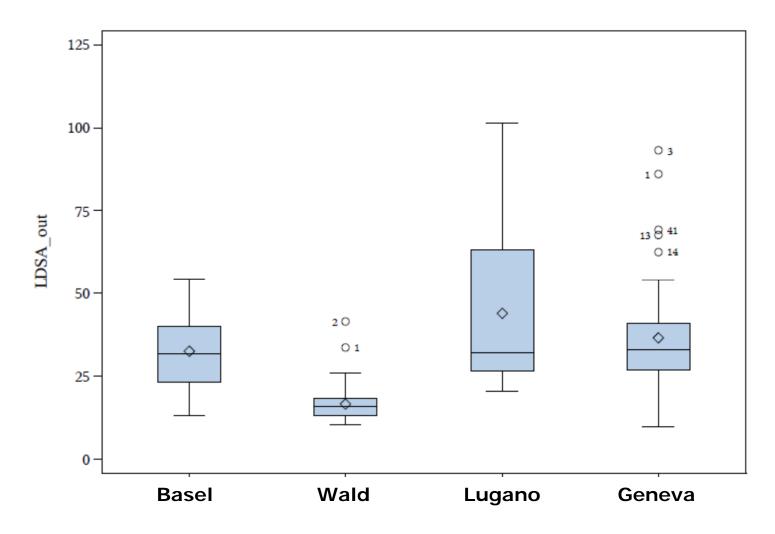
NO₂

- Passive Passam tubes
- 2-week samples

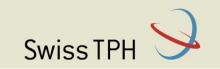
- PM_{2.5}/PM₁₀
- w/ Harvard Impactors (@ 4 L/min)
- 37mm Teflon filter (23±2 °C, 35±5% RH)
- 2-week samples

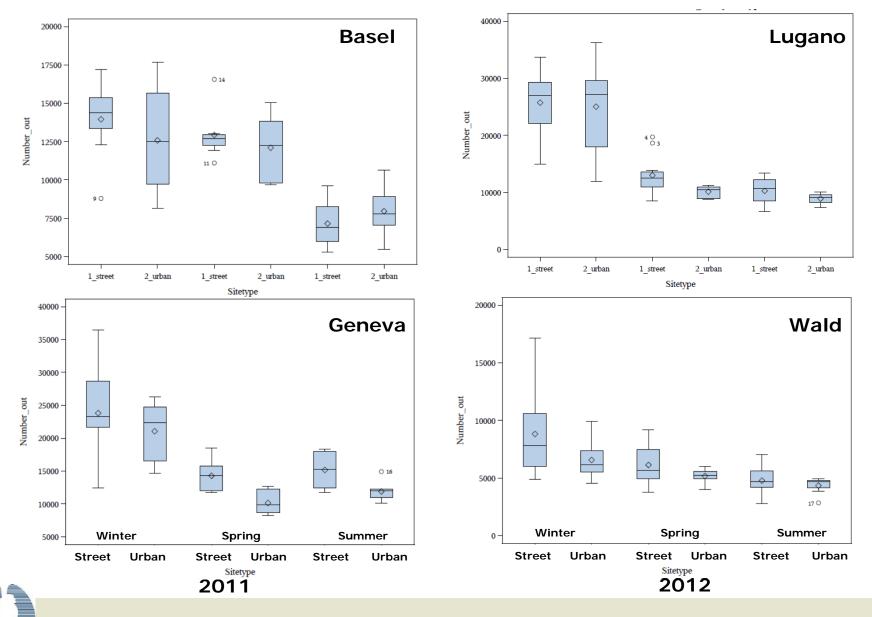
Particle Number, SA & Size


- miniDiSC (1-sec resolution)
- 1-2 week real-time samples
- Dp >12 nm



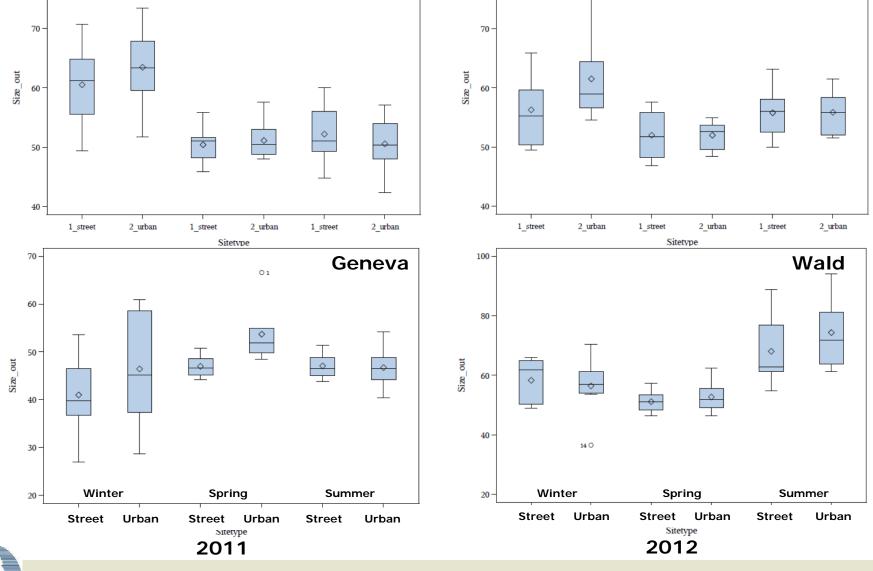
Outdoor UFP Summary: by Season




Pollutant	Area*	Season				
Fonutant	Alta	Winter	Spring	Summer		
	Basel	13200 ± 2800	12400 ± 1800	7500 ± 1500		
Particle	Geneva	21400 ± 6900	11500 ± 3700	13300 ± 2900		
Number (#/cm ³)	Lugano	21100 ± 6600	12000 ± 3000	9800 ± 2000		
· · ·	Wald	7000 ± 3100	5400 ± 1300	4400 ± 900		
	Basel	62.2 ± 7.2	51.0 ± 3.2	51.2 ± 4.7		
Particle	Geneva	43.7 ± 9.5	48.8 ± 6.3	47.2 ± 3.2		
Diameter (µm)	Lugano	58.8 ± 7.0	52.0 ± 3.5	55.8 ± 3.7		
	Wald	59.0 ± 8.4	52.4 ± 4.2	71.9 ± 11.1		
Lung Deposited Surface Area (µm²/cm³)	Basel	42.4 ± 8.2	32.8 ± 3.5	20.0 ± 3.2		
	Geneva	48.5 ± 19.8	27.9 ± 7.3	32.0 ± 6.8		
	Lugano	75.0 ± 14.0	30.9 ± 5.7	27.6 ± 6.5		
	Wald	19.9 ± 7.3	14.3 ± 2.9	15.9 ± 2.8		

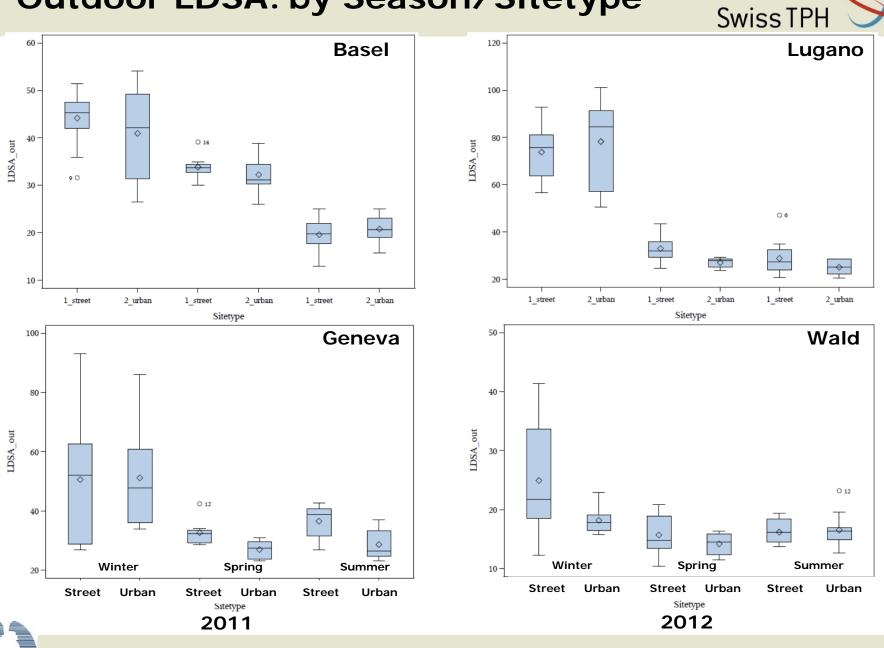
* A maximum of 20 SAP3 households were monitored per each study area/season

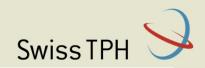
Outdoor PN: by Season/Sitetype

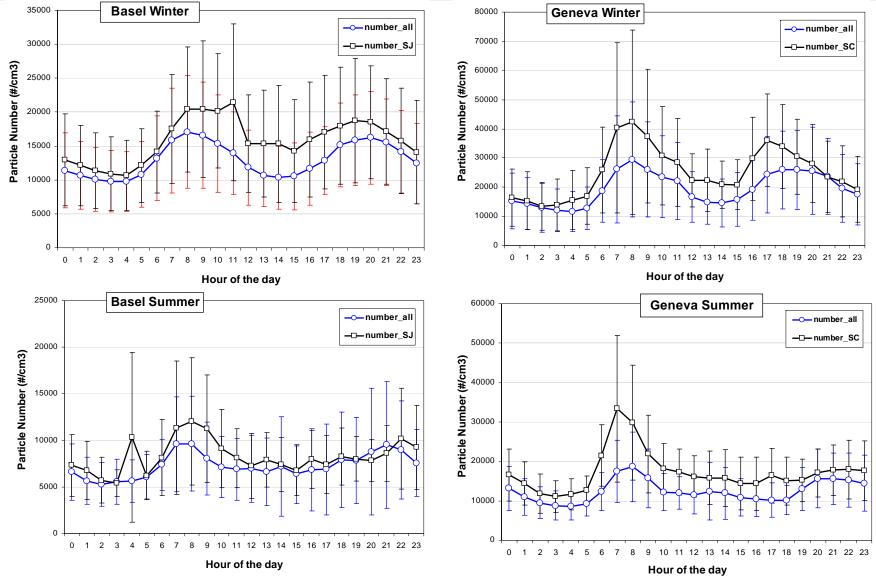


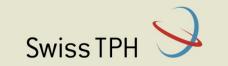
Outdoor D_p: by Season/Sitetype

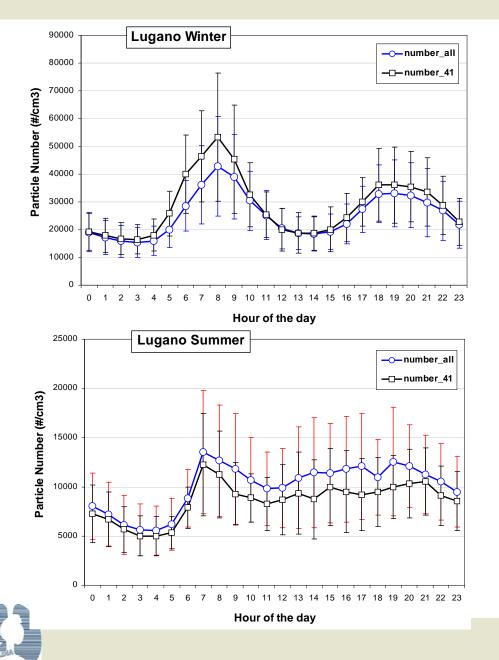
Basel

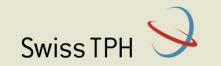

80 -


80 ·


Outdoor LDSA: by Season/Sitetype


Outdoor PN: Diurnal variation

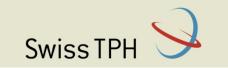




Outdoor PN: Diurnal variation

Correlation with other pollutants

Area	Variable	PM ₁₀	PM _{2.5}	BS _{2.5}	NO ₂	PN	
	PM _{2.5}	0.97	1				
	BS _{2.5}	0.92	0.94	1			
Basel	NO ₂	0.69	0.68	0.80	1		
	PN	0.65	0.63	0.72	0.72	1	t
	LDSA	0.86	0.84	0.87	0.76	0.89	ſ
	PM _{2.5}	0.87	1				
	BS _{2.5}	0.52	0.68	1			
Wald	NO_2	0.34	0.53	0.91	1		
	PN	0.23	0.30	0.71	0.83	1	ſ
	LDSA	0.44	0.55	0.80	0.81	0.85	Γ
	PM _{2.5}	0.98	1				
	BS _{2.5}	0.89	0.90	1			
Lugano	NO ₂	0.71	0.68	0.90	1		
	PN	0.84	0.86	0.92	0.87	1	ſ
	LDSA	0.91	0.93	0.94	0.84	0.96	Γ
	PM _{2.5}	0.91	1				
	BS _{2.5}	0.73	0.82	1			
Geneva	NO ₂	0.49	0.52	0.58	1		
	PN	0.26	0.45	0.56	0.67	1	Γ
	LDSA	0.49	0.67	0.69	0.60	0.89	Γ
							1



Correlation with other pollutants: by Season Swiss TPH

Area	Season	Variable	PM ₁₀	PM _{2.5}	BS _{2.5}	NO ₂	PN
	Winter	PN	0.42	0.56	0.51	0.65	
Basel		LDSA	0.67	0.67	0.71	0.64	0.81
Dasel	Summer	PN	0.16	-0.26	0.06	-0.01	
		LDSA	0.04	-0.34	-0.03	0.06	0.86
	Mintor	PN	0.56	0.38	0.79	0.92	
Wald	Winter	LDSA	0.75	0.52	0.82	0.87	0.89
vvalu	Summer	PN	0.24	0.16	0.56	0.71	
		LDSA	0.33	0.51	0.55	0.45	0.70
	Winter	PN	0.45	0.42	0.43	0.76	
Lugono		LDSA	0.72	0.73	0.64	0.58	0.90
Lugano	Summer	PN	0.58	0.56	0.81	0.84	
		LDSA	0.78	0.76	0.64	0.62	0.86
	Winter	PN	0.35	0.40	0.41	0.70	
		LDSA	0.65	0.71	0.65	0.51	0.80
Geneva	Summer	PN	0.08	0.03	0.41	0.54	
	Summer	LDSA	0.29	0.24	0.63	0.71	0.90

... in Summary

- Weekly outdoor PN levels ranged and 5600±3500 (Wald) to 15700±7400 particles/cm³ (Lugano)
- LDSA values are 16.7±8.4 (Wald) to 44.5±16.5 $\mu m^2/cm^3$ (Lugano)
- Winter had highest PN levels ((~2 times than summer)
- Clear morning and evening rush hour peaks especially for traffic sites
- Moderate to good correlation with NO_2 , soot (R=0.56-0.92)
- Higher correlation in winter than summer

Acknowledgements:

Cantonal air monitoring agencies; BAFU; SNF Field workers; Study participants

...additional info

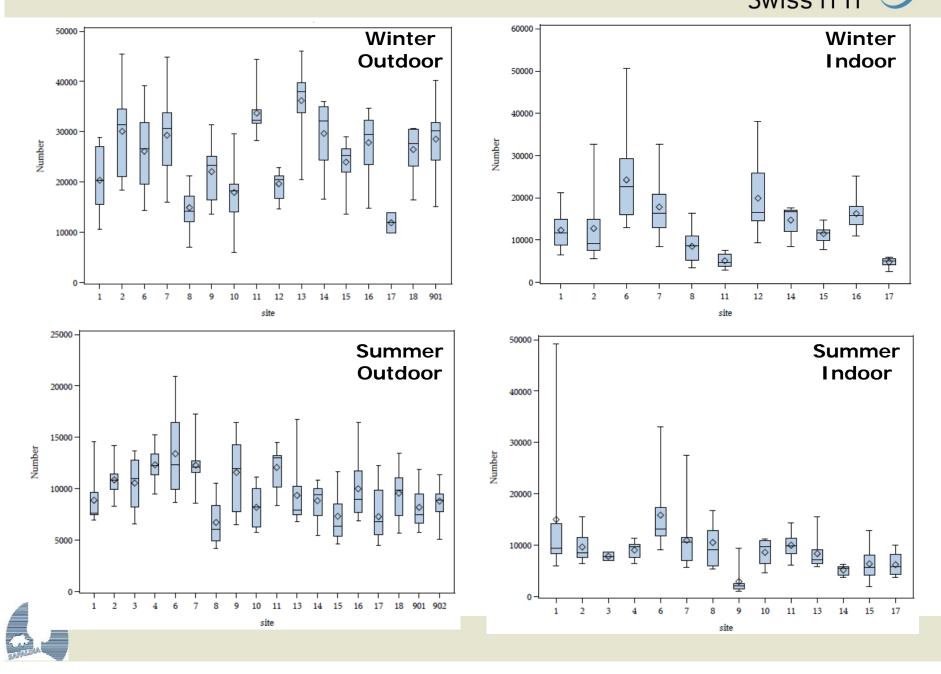
Gravimetric & Chemical Analysis

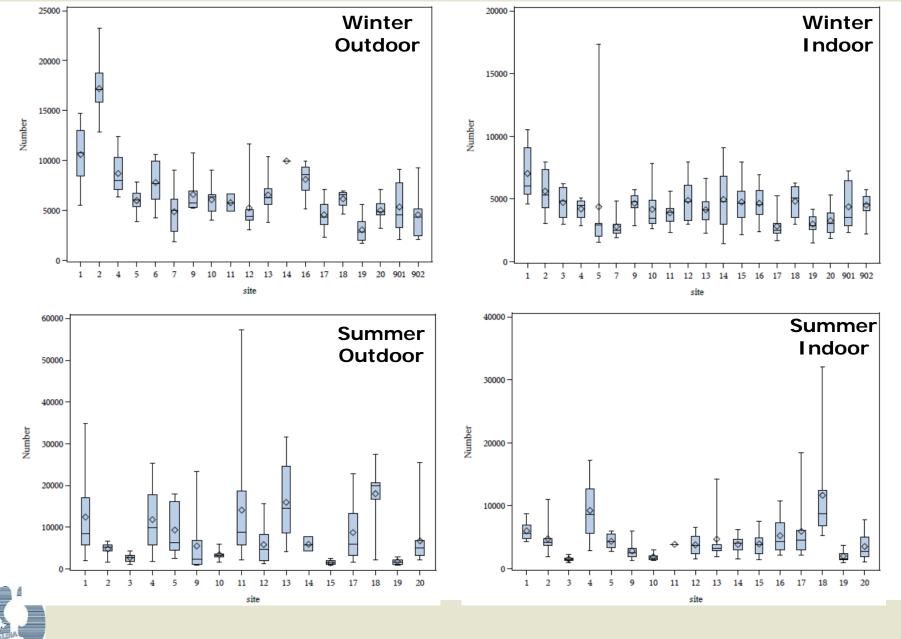
Gravimetric Mass (PM_x)

Mettler-Toledo microbalance

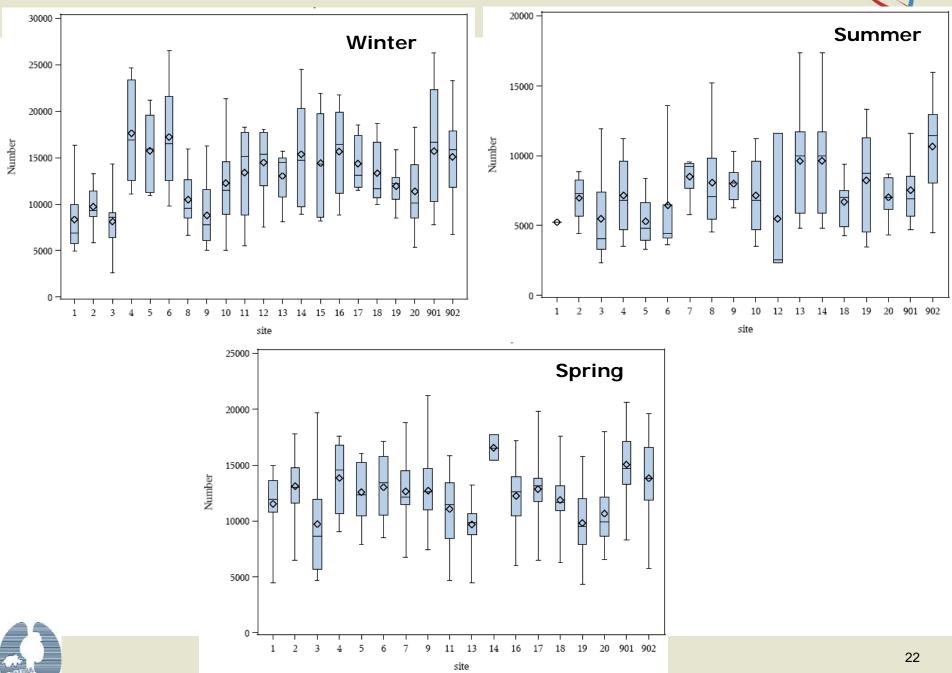
Soot (BS) EEL 43D Black Smoke Reflectometer

Speciated metals X-ray Fluorescence (for PM_{2.5} filters)

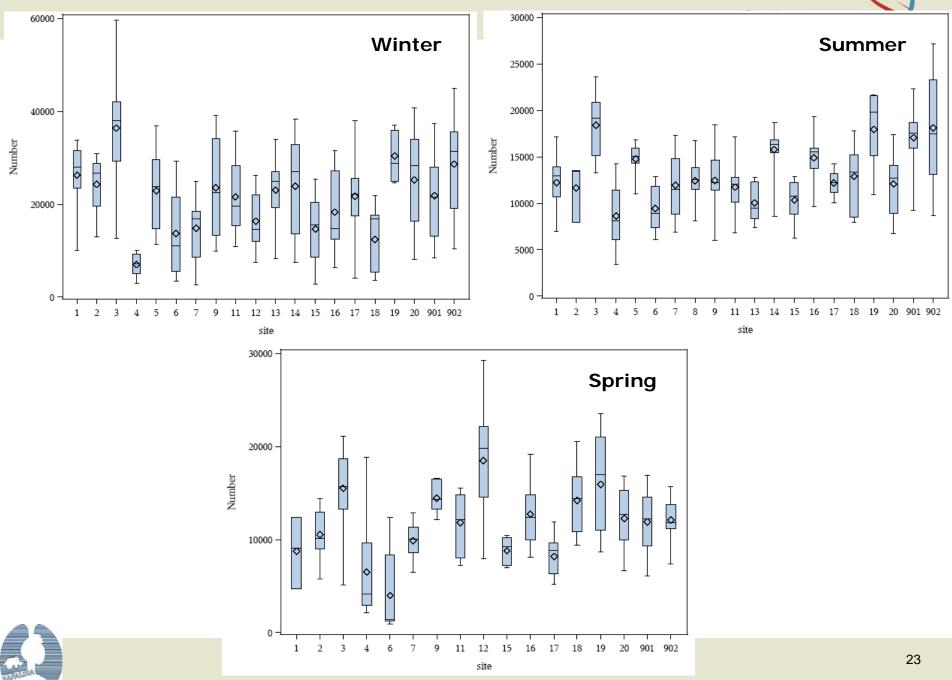

Inorganic ions Ion-chromatography (for PM_{2.5} filters)

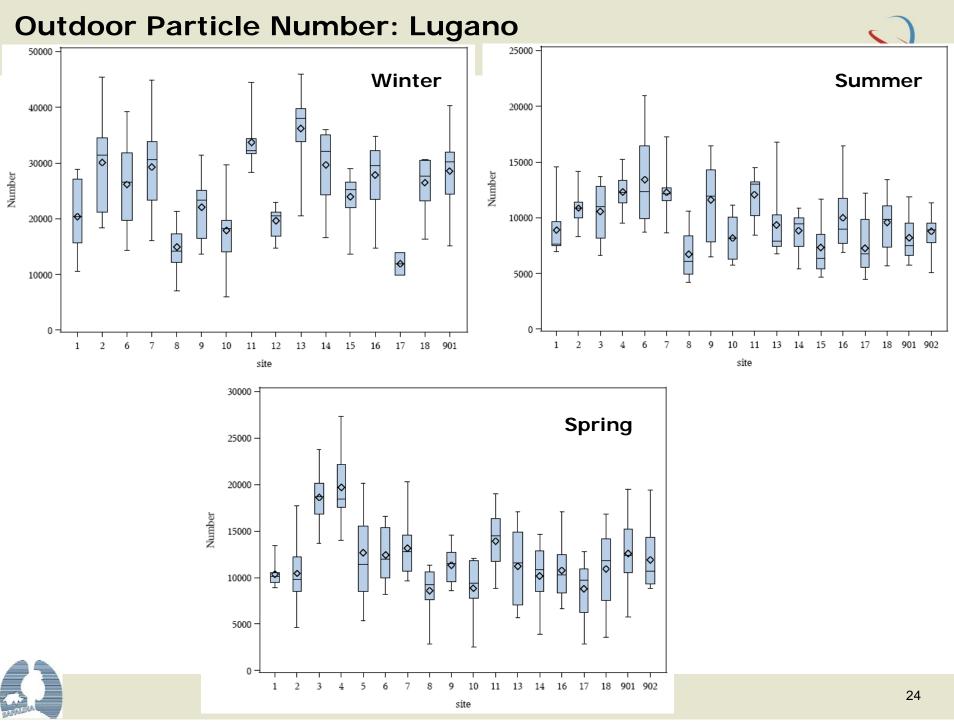


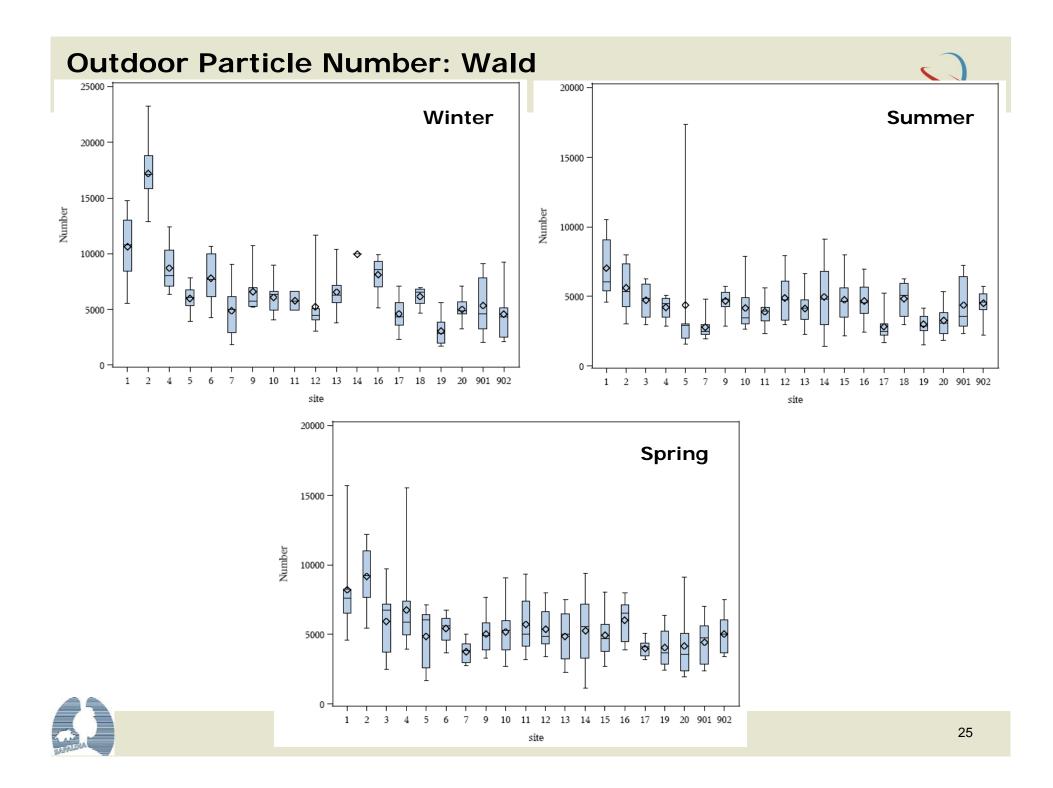
Lugano Indoor-Outdoor UFP: by Season Swiss TPH



Wald Indoor-Outdoor UFP: by Season




Swiss TPH


Outdoor Particle Number: Basel

Outdoor Particle Number: Geneva

