

On-road emission factors of PM pollutants for light-duty vehicles (LDVs) based on urban street driving conditions

Winnie Kam, James W. Liacos¹, James J. Schauer², Ralph J. Delfino³, Constantinos Sioutas^{*1}

¹University of Southern California, Department of Environmental Engineering, Los Angeles, CA ²University of Wisconsin-Madison, Environmental Chemistry and Technology Program, Madison, WI

³University of California, Irvine, School of Medicine, Department of Epidemiology, Irvine, CA

http://dx.doi.org/10.1016/j.atmosenv.2012.07.072

Related Publications

- Kam, W., Delfino, R. J., Schauer, J. J., & Sioutas, C. (2013). A comparative assessment of PM2. 5 exposures in light-rail, subway, freeway, and surface street environments in Los Angeles and estimated lung cancer risk. *Environmental Science: Processes & Impacts*, 15(1), 234-243
- Kam, W., Liacos, J. W., Schauer, J. J., Delfino, R. J., & Sioutas, C. (2012). Size-segregated composition of particulate matter (PM) in major roadways and surface streets. *Atmospheric Environment*. 55 : 90-97,
- 3. Kam, W., Liacos, J. W., Schauer, J. J., Delfino, R. J., & Sioutas, C. (2012). On-road emission factors of PM pollutants for light-duty vehicles (LDVs) based on urban street driving conditions. *Atmospheric Environment*. 61:378-386
- Liacos, J. W., Kam, W., Delfino, R. J., Schauer, J. J., & Sioutas, C. (2012). Characterization of organic, metal and trace element PM< sub> 2.5</sub> species and derivation of freeway-based emission rates in Los Angeles, CA. *Science of the Total Environment*, 435, 159-166.

REFERENCES

State of the Art

Light-duty vehicle (LDV) studies

Caldecott Tunnel bore (no heavy-duty vehicles (HDVs))

• Kirchstetter et al. 1999; Geller et al. 2005; Ban-Weiss et al. 2008

I-110 Freeway portion (no HDVs)

• Ning et al. 2008; Kuhn et al. 2005; Phuleria et al. 2007

Chassis dynamometer studies for various LDVs

• Schauer et al. 1999; Yanowitz et al. 1999; Fujita et al. 2007

On-road studies

Mobile laboratory equipped with continuous instruments

• Fruin et al. 2004; Westerdahl et al. 2005; Weimer et al. 2009; Weiss et al. 2011; Gouriou et al. 2004

INTRODUCTION | 3 OF 13

Sampling instrumentation

Vehicle used:

• Honda Insight Hybrid 2011

Instruments used:

- 7 Personal Cascade Impactor Samplers (PCIS)
 - collect PM_{10-2.5}, PM_{2.5-0.25}, and PM_{0.25}
 - Teflon and Quartz substrates
 - Total flow 70 LPM
- Battery-powered pumps
- TSI Q-trak
 - \succ CO₂ measurements
- Garmin GPS for tracking

EXPERIMENTAL METHODS | 4 OF 13

Sampling Campaign Details

PCIS Impactor Set Up

On-road campaign

Honda Insight Hybrid 2011

EXPERIMENTAL METHODS 7 OF 18 University of Southern California

Sampling Logistics and Chemical Analysis

Logistics:

- Wilshire and Sunset
 Boulevards
- M-F from 6AM 5PM on March 9-16 and April 26-May 5, 2011
- N=2, each representing ~<u>60h of sampling per run</u>

Chemical analysis:

✓ Total metals (SF-ICPMS)
 ✓ Organic species (GC/MS)

 ✓ EC/OC (Thermal Evolution/Optical Transmittance)

EXPERIMENTAL METHODS| 5 OF 13

Fuel-based Emission Factors (EFs)

 E_p = emission factor of pollutant P in mg/(kg of fuel burned)

[P] = pollutant concentration in μ g/m³

 $[CO_2] = CO_2$ concentration in C/m³

st and bg refer to streets and background site (USC campus), respectively

 w_c = carbon weight fraction of gasoline, 0.85

(Kirchstetter et al. 1999; Phuleria et al. 2006; Ning et al. 2008)

RESULTS AND DISCUSSION | 6 OF 13

Earlier LDV studies

Sampling location/test cycle	Sample/test period	Relevant results for comparison	Reference
Wilshire/Sunset Blvds	March-May 2011	_	current study
LDV freeway (northern portion of I-110)	May-Jun 2004, Jan 2005	mass, EC, OC, metals, PAHs, hopanes and steranes	Ning et al. (2008)
LDV tunnel (Bore 2 of Caldecott Tunnel)	Aug-Sept 2004	PM mass, EC, OC, metals	Geller et al. (2005)
LDV tunnel (Bore 2 of Caldecott Tunnel)	Aug-Sept 2004	PAHs, hopanes and steranes	Phuleria et al. (2006)
LDV dynamometer study (warm-start UDC)	Summer 2001	mass, EC, OC, metals, PAHs, hopanes and steranes	Fujita et al. (2007)
LDV dynamometer study (cold- start FTP)	_	PM mass, PAHs, hopanes	Schauer et al. (2002)

RESULTS AND DISCUSSION | 9 OF 13

EFs – PM components and elements

RESULTS AND DISCUSSION | 7 OF 13

Ratios of PM2.5 in Various LA Freeways and busy streets vs USC (urban background site)- from *Kam et al Atmos Environ 2012*

2-5 fold higher levels of PM-bound metals from road dust in busy streets compared to urban background

Total PM2.5 PAH concentrations in Wilshire/Sunset Blvds 8 times higher than urban background site of USC (*Kam et al , Atmos Environ, 2012*)

Significant non tailpipe emissions of metals

School of Engineering

RESULTS AND DISCUSSION | 8 OF 13

PM_{2.5} EF comparison to earlier studies

- LDV freeway (Ning et al. 2008)
- LDV tunnel (Geller et al. 2005)
- + LDV dyno (Fujita et al. 2007)
- × LDV dyno (Schauer et al. 2002)

* Ning et al. 2008 reported positive OC adsorption artifact; Geller et al. 2005 omitted ultrafine fraction

RESULTS AND DISCUSSION | 10 OF 13

PM_{2.5} EF comparison to earlier studies

- LDV freeway (Ning et al. 2008)
- ▲ LDV tunnel bore (Phuleria et al. 2006)
- + LDV dyno (Fujita et al. 2007)
- × LDV dyno (Schauer et al. 2002)

Concluding Remarks

- On-road sampling of two major surface streets (Wilshire/Sunset Blvd) in Los Angeles, CA
- Emission factors are representative of a LDV fleet characterized by frequent acceleration and deceleration
- Previous LDV studies were conducted near freeway and tunnel, and chassis dynamometers
- EFs from current study showed higher levels of metals and trace elements associated with vehicular abrasion (Fe, Ca, Cu, and Ba) and crustal origins (Mg and Al)
- PAH EFs from current study are lower than LDV from tunnel studies and higher than LDV freeway studies

Hopane and sterane EFs are comparable between studies

CONCLUSION | 12 OF 13

Acknowledgements

This work was funded by the California Air Resources Board through contract number #07-310 and by the Southern California Particle Center (SCPC), funded by the US EPA under the STAR program through Grant RD-8324-1301-0 to the University of Southern California.

Other members and former members of the lab involved:

Dr. Payam Pakbin Dr. Kalam Cheung Dr. Zhi Ning

ACKNOWLEDGEMENTS | 13 OF 13