Estimating Spatial Variability of Ambient Particulate Matter Using Land-use Regression in Tehran, Iran

Hassan Amini, Seyed Mahmood Taghavi Shahri, Sarah B. Henderson, Kazem Naddafi, Ramin Nabizadeh, Masud Yunesian

Introduction

Air pollution and Health in Iran

Acute or chronic effects?!

•Acute \rightarrow Time-series studies

•Chronic \rightarrow Cohort studies

Acute-effect studies of air pollution in Iran

Hospitalization due to angina pectoris

Available online at www.sciencedirect.com

Environmental Research 99 (2005) 126-131

Environmental Research

www.elsevier.com/locate/envres

Air pollution and hospitalization due to angina pectoris in Tehran, Iran: A time-series study $\stackrel{r}{\approx}$

Ahmad Reza Hosseinpoor^{a,*}, Mohammad Hossein Forouzanfar^a, Masoud Yunesian^b, Fariba Asghari^c, Koroush Holakouie Naieni^a, Dariush Farhood^d

^aDepartment of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Poursina Street, Keshavarz Boulevard, P.O. Box 14155-6446, Tehran, Iran

1 ppm daily CO increment = 1% increase of admissions

Received 29 June 2004; received in revised form 27 November 2004; accepted 6 December 2004 Available online 5 February 2005

Acute-effect studies of air pollution in Iran

All causes, cardiovascular and respiratory mortality

RESEARCH ARTICLE

Open Access

Health impact assessment of air pollution in megacity of Tehran, Iran

Kazem Naddafi^{1,2}, Mohammad Sadegh Hassanvand^{1,2*}, Masud Yunesian^{1,2}, Fatemeh Momeniha^{1,3}, Ramin Nabizadeh^{1,2}, Sasan Faridi¹ and Akbar Gholampour¹

All cause mortalityPM10 = 4.6%SO2 = 3.1%NO2 = 2.2%O3 = 1.7%

Acute-effect studies of air pollution in Iran

Hospitalization due to COPD & respiratory diseases

RESEARCH ARTICLE

Open Access

Health impact assessment of air pollution in Shiraz, Iran: a two-part study

Ehsan Gharehchahi¹, Amir Hossein Mahvi^{1,2}, Hassan Amini^{3*}, Ramin Nabizadeh¹, Ali Asghar Akhlaghi^{4,5}, Mansour Shamsipour^{4,6} and Masud Yunesian^{1,7*}

10 ug/m3 increment PM10 = 0.04% respiratory hospital admissions 10 ug/m3 increment SO2 = 9% COPD hospital admissions

Respiratory admissions in 2008 PM10 = 8.1% SO2 = 30.3% (elderly)

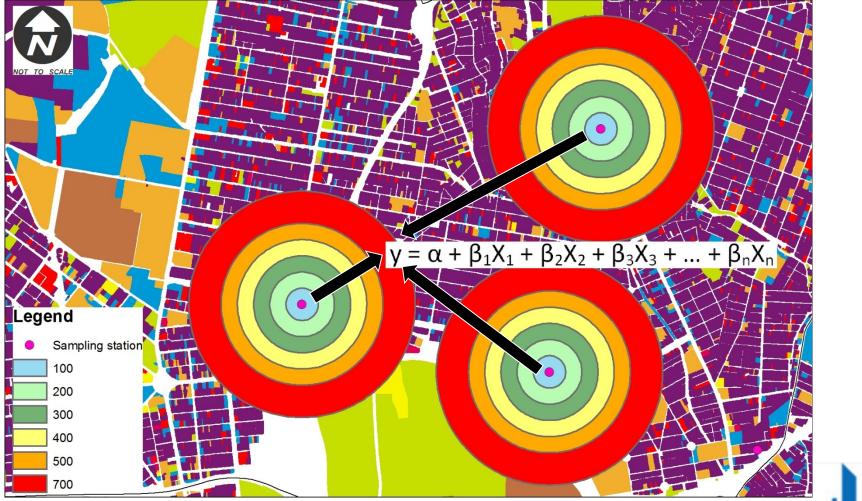
Long-term effect assessment?!

Long-term exposure assessment

■Spatial models → Land-use regression (LUR)

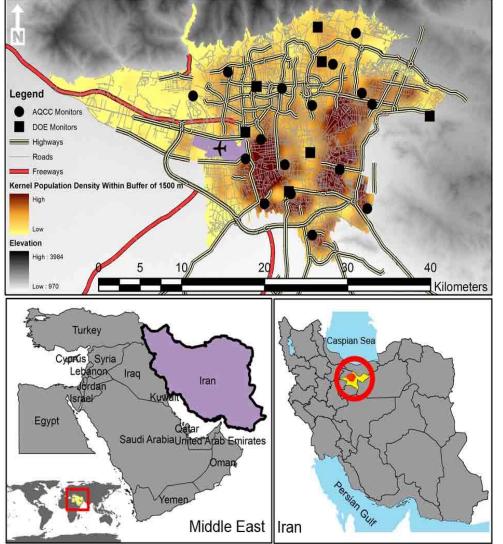
Key features of our LUR approach

LUR in novel context of Tehran, Iran


A novel variable selection method for LUR

Several new predictive variables and variable types

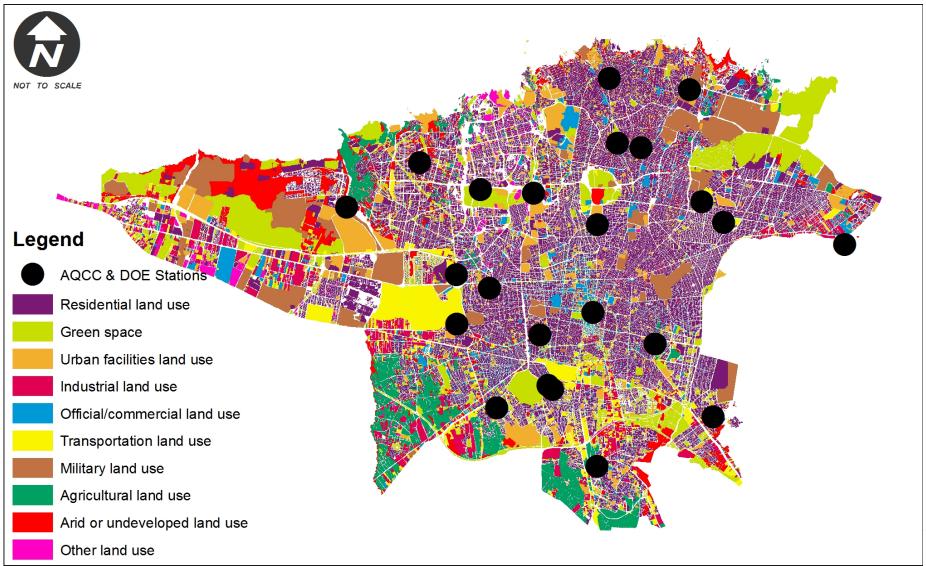
Method of LUR


Land use regression (LUR)

Methods – Study area

Location of Tehran, Iran, Middle East

•Annual mean temperature 18.5°C Highs 40 °C in July Lows -10°C in January


•Annual precipitation 150 mm

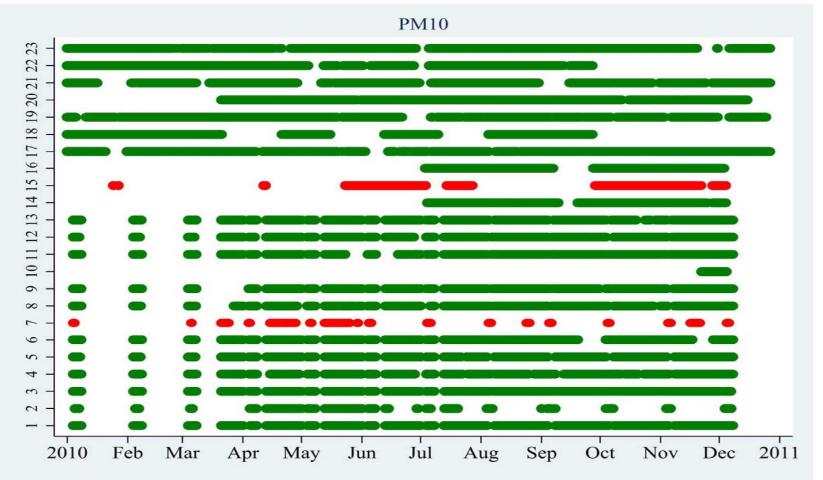
•Weather typically sunny 2800 hours bright sunshine

•Mean cloud cover 30%

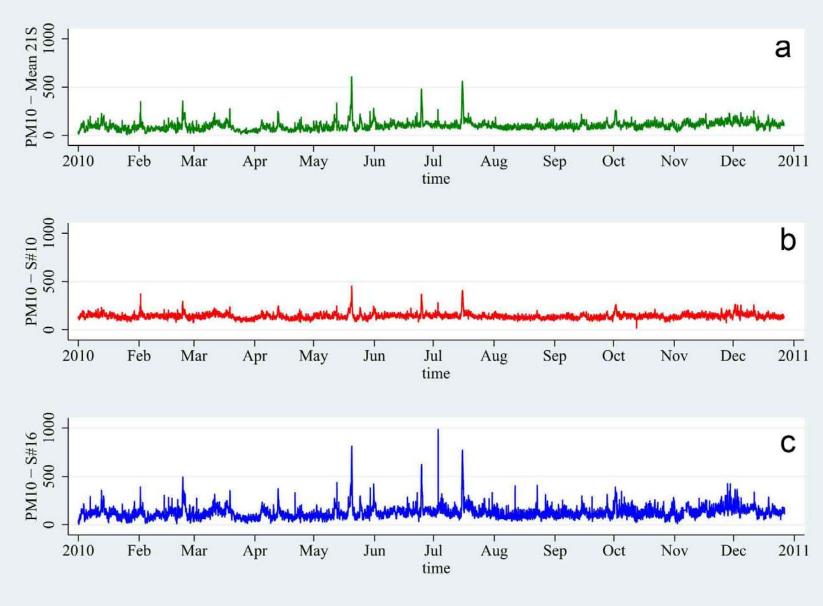
Methods – Land use in Tehran

Hourly 2010 PM₁₀ concentrations

•23 air quality monitoring stations


•Quality control \rightarrow 57% available

Imputation of missing data


Page • 11

The missing data at each site

•The Amelia program

- Annual mean = January 1st, 2010 through January 1st, 2011
- Cooler season mean = October through March
- Warmer season mean = April through September

Methods – Generation of spatial predictors

210 variables in five classes

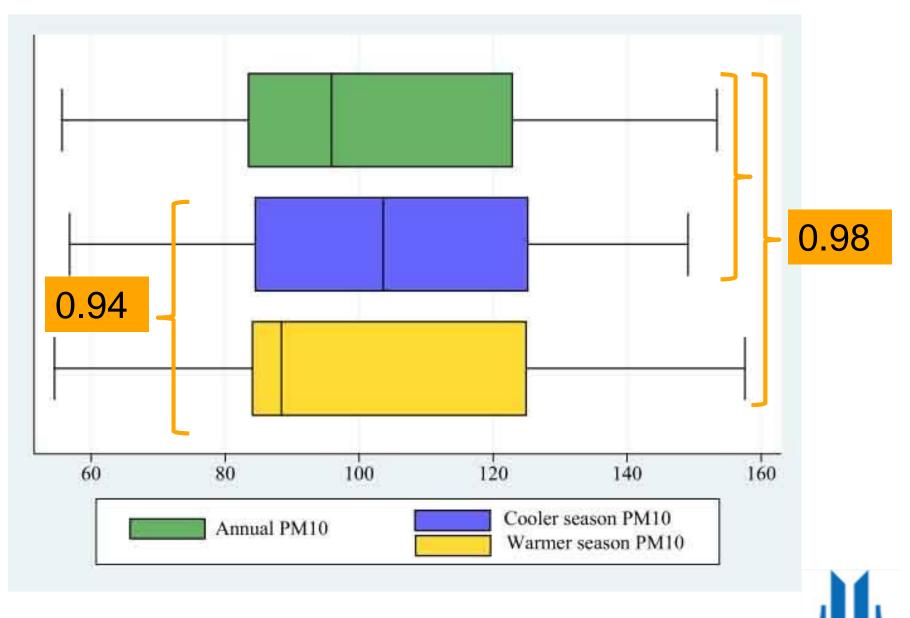
□Traffic Surrogates (N = 76)

 \Box Land Use (N = 50)

 \Box Distance Variables (N = 60)

DPopulation Density (N = 22)

 \Box and Geographic Location (N = 2)


Methods - Model development

A systematic algorithm

- 1. Consistency with *a priori* assumptions about the direction of the effect for each variable
- 2. A *p*-value of < 0.1 for each predictor
- 3. Increases in the coefficient of determination (R²) for a leave-one-out cross-validation (LOOCV)
- 4. A multicollinearity index called the variance inflation factor (VIF)
- 5. A grouped (leave-25%-out) cross-validation (GCV) for final model

Results – Air pollution data

Page • 17

Results – Final LUR models, Annual PM10

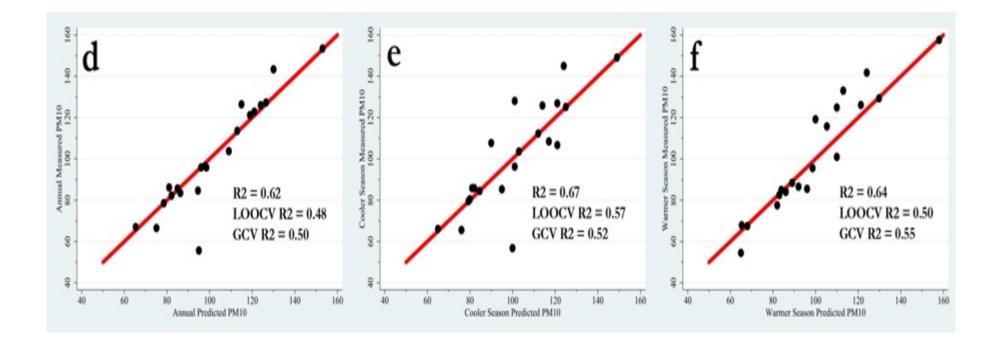
R ² = 0.62 LOOC	V R ² = 0.48	GCV R ² :	= 0.50	
Predictor	Coefficient	Partial R ²	P-value	
Intercept	2.37E+02	-	<0.001	
log distance to the bus terminal	-1.61E+01	0.40	0.005	
distance to airport	-3.64E-03	0.30	0.018	
street length in 100 m	1.10E-01	0.27	0.028	
Other land use area in 300 m	-2.88E-03	0.20	0.065	
LOOCV, Leave-one-out cross validation				

GCV, Grouped (leave-25%-out) cross validation

Results – Final LUR models, Cooler season PM10

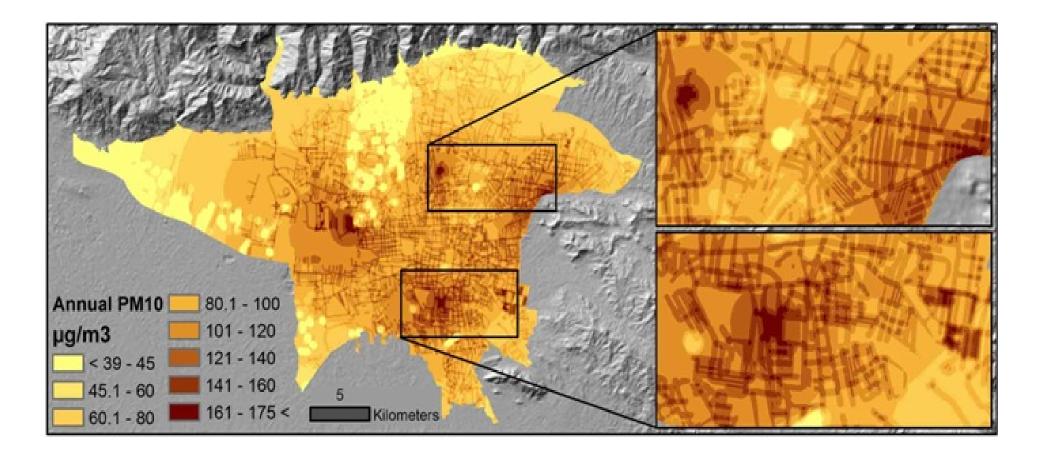
R ² = 0.67	LOOCV R ²	= 0.57	GCV R ² = 0	.55
Predictor		Coefficient	Partial R ²	P-value
Intercept		2.39E+02	-	<0.001
log distance to the bu	s terminal	-1.60E+01	0.44	0.003
distance to airport		-4.10E-03	0.39	0.006
street length in 100 m	1	1.02E-01	0.27	0.027
Other land use area in	n 300 m	-3.16E-03	0.26	0.032

LOOCV, Leave-one-out cross validation GCV, Grouped (leave-25%-out) cross validation

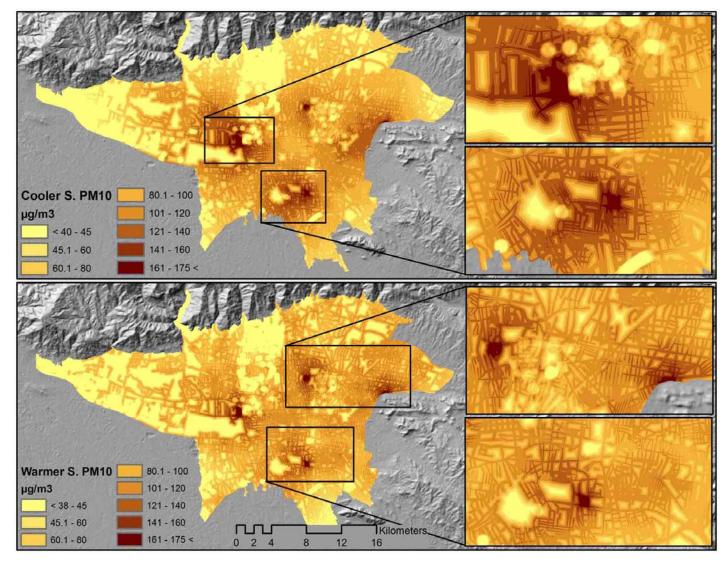

Results – Final LUR models, Warmer season PM10

R ² = 0.64	LOOCV R ² = 0.50		GCV R ² = 0	.52
Predictor		Coefficient	Partial R ²	P-value
Intercept		2.75E+02	-	<0.001
log distance to the	bus terminal	-1.83E+01	0.47	0.002
distance to the mili	tary land use	-1.13E-02	0.34	0.012
distance to the maj	or roads	-2.22E-01	0.32	0.015
Other land use are	a in 300 m	-3.81E-03	0.27	0.028
LOOCV, Leave-one-out cross validation GCV, Grouped (leave-25%-out) cross validation				

Results – Final LUR models


Predicted PM₁₀ concentrations agree well with measured concentrations

Results – Final LUR maps


Annual PM₁₀ model captures hot-spots well, such as bus terminals

Results – Final LUR maps

Cooler season and warmer season PM₁₀ models are very similar

Page ■ 23

Results – Application of LUR in population

 All population lived in areas exceeding WHO's Air Quality Guideline (20 µg/m³) for PM₁₀

88% of the general population and 89% of the children under 5 lived in areas exceeding WHO's Interim Target 1 Guideline (70 μg/m³) for PM₁₀

Conclusions and outlook

We have generated LUR models for use in upcoming population-based epidemiologic studies

 Strength & limitations to using regulatory network data for LUR modeling needs further investigation

Conclusions and outlook

In future health studies we need additional pollutants:

Pollutant	Involvement
Nitrogen oxides	Yes
Sulfur dioxide	Yes
PM10	Needs clarification
PM2.5	Needs clarification
PM2.5 - PM10	Needs clarification
Ultrafine particles	Needs clarification
Elemental carbon	Needs clarification
Elemental composition	Needs clarification
PAHs	Needs clarification

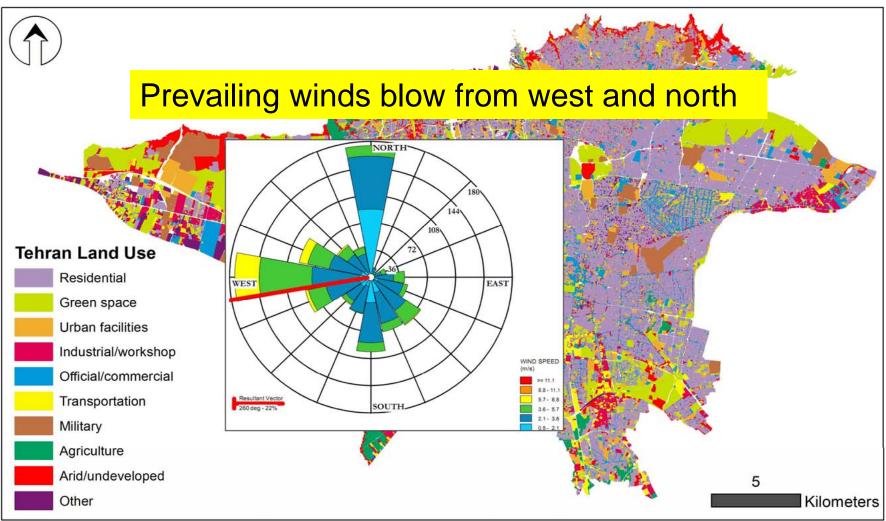
Thanks to:

Seyed Mahmood Taghavi Shahri, Sarah B. Henderson, Kazem Naddafi, Ramin Nabizadeh, Masud Yunesian

Gerard Hoek, Michael Brauer, Nino Künzli

Special thanks to Swiss TPH colleagues

Thanks for your attention!


Hassan Amini amini_h@razi.tums.ac.ir

Additional figures for discussion

• Wind rose in Tehran, Iran

