# How the humidity affects the microwavebased soot load determination of a DPF

Markus Feulner, Ralf Stöber, Gerhard Fischerauer, Ralf Moos

Bayreuth Engine Research Center (BERC), University of Bayreuth, 95447 Bayreuth, Germany funktionsmaterialien@uni-bayreuth.de

## **Fundamentals**

- Knowledge of the actual trapped soot mass of diesel particulate filters (DPF) is important for a fuel-efficient engine control and filter regeneration strategy  $\rightarrow$  State of the art: indirect and model-based soot load evaluation, involving the pressure loss at the DPF [1]
- Novel approach enables direct and contactless soot load detection of a DPF using microwaves:
  - Two antennas are installed in the canning up- and downstream of the filter:

With a Vector Network Analyzer (VNA), microwaves (0.5 - 2.5 GHz) are emitted into the resonator and recorded at the same time. Inside the housing characteristic standing waves (resonance modes) form, as the metallic canning defines a cavity resonator.

Measuring of reflection-  $(S_{11}, S_{22})$  and transmission-  $(S_{12}, S_{21})$  spectra





- Spectra vary with conductivity and hence with the soot load inside the DPF  $\bullet$
- Various parameters possible: here resonance frequency, f<sub>res</sub>, and the transmission factor, averaged between 0.8 2.5 GHz, are considered





# **1. Soot loading**

Filter was mounted in the exhaust pipe of a dynamometer test bench (3.0 I TDI engine, 6 cyl.)

Soot loading under constant speed and load (2350 min<sup>-1</sup>, 20%)

- $\rightarrow$  soot mass on DPF at end of experiment: 1.5 g/I<sub>DPF</sub>
- Linear decrease of resonance frequency  $f_{res}$  (TE112-Mode) and the averaged transmission parameter during soot loading
- Accumulating soot changes the electrical conductivity and permittivity inside the resonator
- Behavior is consistent to previous results and literature [2, 3, 4]

Resonance frequency (upper graph) and averaged transmission factor (lower graph) during soot loading.

### 2. Humidity and temperature variation

Stepwise variation of ambient temperature (13 – 80°C) and relative humidity (2 – 80 %) in a climate cabinet. Thereby, no direct gas flow through the DPF was enforced! Climatic exposure test was conducted several times: with empty resonator/housing, with a soot-free DPF, with the soot-loaded DPF (1.5 g/I<sub>DPF</sub>).



 $f_{\rm res}$  (upper graphs) and averaged transmission factor (lower graphs) over relative humidity at different temperatures. Each step was set for 2hrs before measuring the rf-parameters.

- $\blacktriangleright$  Increase of temperature or humidity lead to decrease of  $f_{res}$  and the averaged transmission factor  $\rightarrow$  change in conductivity and permittivity with  $\vartheta$  and r.h.
- Sensitivity on humidity increases with higher temperature (especially for  $f_{res}$ )
- $\blacktriangleright$  Values of  $f_{res}$  and the transmissions parameter are higher than at the end of soot loading  $\rightarrow$  lower temperature ( $\vartheta_{exb}$ : 230°C)



Resonance freq. (upper graph) and averaged transmission (lower graph) during long-termdrying of a soot-loaded DPF at 50°C.

- Influence of temperature overbalances that of drying
- $f_{\rm res}$  depends more on humidity of the DPF than the averaged transmission factor (almost no effect)

### **Summary and conclusions**

In total, signal shifts caused by humidity are very small compared to shifts

| -<br>10 - |                                                 |  |
|-----------|-------------------------------------------------|--|
| -         | soot 1 g/l <sub>DPF</sub>                       |  |
| 0         | $rh$ 15% $\rightarrow$ 50% 80°C soot-loaded DPF |  |



### during soot loading

- Soot-free DPF or empty canning: almost no influence of humidity occurs
- Soot loaded DPF: ambient conditions need to be considered in real-world applications
- Especially  $f_{res}$  is affected by humidity; only minimal influence on averaged transmission parameter (for  $\vartheta < 100^{\circ}C$  !)
  - → Behavior above 100°C needs to be examined
  - → The averaged transmission seems more suitable for application

REFERENCES

### ACKNOWLEDGMENT

This work was supported by the German Research Foundation (DFG) under MO 1060/6-2 and FI 956/3-2.

DFG Deutsche Forschungsgemeinschaft





[1] D. Rose, T. Boger, SAE Paper 2009-01-1262, 2009. [2] G. Fischerauer, M. Förster, R. Moos, Meas. Sci. Tech. 21 (2010) 035108. [3] M. Feulner, G. Hagen, A. Müller, A. Piontkowski, G. Fischerauer, D. Brüggemann, R. Moos, Topics in Catalysis 56 (2013), 483-488. [4] A. Sappok, L. Bromberg, J Parks, V. Prikhodko, SAE Paper 2010-01-2126, 2010.

www.berc.uni-bayreuth.de **AUTOMOTIVE COMPONENTS ENGINEERING**