Coagulation of fractal-like aerosols in the transition regime

E. Goudeli, M.L. Eggersdorfer and S.E. Pratsinis Particle Technology Laboratory ETH Zürich

Fonds national suisse Schweizerischer Nationalfonds Fondo nazionale svizzero Swiss National Science Foundation

European Research Council Established by the European Commission

Aerosols *Radiative Forcing - Emissions*

- Larger error bar than greenhouse gases
- Impact in global radiation budget by absorbing & scattering light
- Investigate & regulate emissions from aerosol measurements

Goal:

Understanding agglomerate

- Structure (relate to agglomerate mass)
- Dynamics

in the *free molecular*, *transition* and *continuum* regime of aged aerosols in the atmosphere

Motivation:

Connect emissions to aerosol size measurements

 $r_{va} \leftrightarrow r_g, r_m$

• Facilitate understanding of aerosol contribution in climate forcing (minimize hopefully error bar)

Previous Work

- Brownian coagulation of spheres^{1,2}
- Non-spherical particles determination of evolving structure^{3,4,5}

collisional growth and dynamics⁶

on-line measurements of agglomerate size and structure^{7,8}

- 1. von Smoluchowski M. (1917), Z. Phys. Chem. Stoechiom. Verwandtschafts., 92, 129-168.
- 2. Buesser B, Heine MC, Pratsinis SE (2009), J. Aerosol Sci., 40, 89-100.
- 3. Kostoglou M, Konstandopoulos AG (2001), J. Aerosol Sci., 32, 1399-1420.
- 4. Schmid HJ, Al Zaitone B, Artelt C, Peukert W (2006), Chem. Eng. Sci., 61, 293-305.
- 5. Eggerdorfer ML, Kadau D, Herrmann HJ, Pratsinis SE (2011), Langmuir, 27, 6358-6367.
- 6. Thajudeen T, Gopalakrishnan R, Hogan CJ Jr. (2012), Aerosol Sci. Technol., 46, 1174-1186.
- 7. Eggersdorfer ML, Gröhn AJ, Sorensen CM, McMurry PH, Pratsinis SE (2012), J. Colloid Interface Sci., 378,12-23.

5

8. Gröhn AJ, Eggersdorfer ML, Pratsinis SE, Wegner K (2014), J. Aerosol Sci., 73, 1-13.

Free molecular regime: Event-driven method¹

 $\overline{u}_p =$

Ballistic trajectories:

BCCA

SiO₂ particles (like fly ash) $T = 27 \circ C$

Continuum regime: Langevin Dynamics²

1. Allen MP, & Tildesley DJ. (1991). Computer Simulation of Liquids, Oxford University Press, New York.

2. Heine MC, & Pratsinis SE. (2007). Langmuir, 23, 9882-9890.

3. Eggersdorfer ML, Kadau D, Herrmann HJ, & Pratsinis SE. (2010). J. Colloid Interface Sci., 342, 261-268.

Validation – Full Coalescence Collision Frequency Function, β

Enhancement due to polydispersity & attainment of self-preserving size distribution

1. Dahneke, B. (1983). Academic Press, New York, 97-133.

2. Fuchs NA. (1964). Mechanics of Aerosols. Macmillan, New York.

3. Gopalakrishnan R, Thajudeen T, Hogan CJ Jr. (2011). J. Chem. Phys., 135, 054302-1 – 054302-9.

4. Husar RB, Whitby KT. (1973). Environ. Sci. Technol., 7, 241 – 247.

1. Eggersdorfer ML, Pratsinis SE. (2014) Adv. Powder Technol., 24, 71-90.

Results – Agglomerate Structure Evolution

Results – Agglomerate Structure Evolution

Results – Geometric Standard Deviation

1. Vemury S, Pratsinis SE. (1995). J. Aerosol Sci. 26: 175-185.

 D_f evolution from spherical to fractal-like structures: $D_f = f(n_p)$

Geometric Standard Deviation of Quasi-Self-Preserving

	Spheres		Agglomerates			
	FM	Continuum	FM	Continuu	m	
• $\sigma_{a,v}$	1.33	1.32	1.41	1.31		
• σ_{am}	1.46	1.44	2.03	-		
• $\sigma_{\!g,g}$	1.46	1.44	2.27	1.95	$\sigma_{g,g} = f(Kn_{D,m})$	12

THANK YOU FOR YOUR ATTENTION!