Field Measurement Technical Aspects of the First Generation PN Field Instrument

TSI Nanoparticle Emission Tester Model 3795

Hans-Georg Horn TSI GmbH, Aachen, Germany

Brian Osmondson, Jason Johnson Aaron Avenido TSI Inc., Shoreview, MN, USA

UNDERSTANDING, ACCELERATED

Overview

+ Purpose & background
+ TSI Model 3795 -technical overview
+ Prototype conformance tests at METAS

• SR 941.242 requirements and NPET specifications

+ First field measurement results

Purpose & Background

- + Swiss ordinance requires diesel particulate filter (DPF) for non-road mobile machinery (NRMM)
 - Test the efficacy of installing DPF
- + Bi-annual test to certify machinery for use
 - Determine if DPF is good or is damaged (e.g. cracked) and needs to be replaced

Swiss Regulation SR 941.242

- + Effective Jan. 1, 2013 (latest changes effective March 1, 2014), Switzerland amended the regulation requiring periodic PN emissions testing and compliance for diesel engines
 - Amended the "Ordinance of the Federal Department of Justice and Police on Exhaust Gas Analyzers"
- + Candidate instruments must be tested & approved by Federal Office of Metrology (METAS)
 - i.e. "Conformity of Compliance"
- + Measurement procedure refinement is underway, BAFU workshop in April 2014
- + Enforcement expected to start ~January 2015

Block Diagram

+

+

+

+

+

+

+

General & Official Operation Modes

General & Official Operation Modes

Solid Particle Detection Efficiency

Concentration Range and Linearity

Volatile Particle Removal

Prototype Conformity Tests at METAS

Test	Requirement	NPET Prototype
Efficiency 23 nm CAST 23 nm, GSD = 1.48	$\left[E = \frac{C_{Dut}}{C_{CPC}}\right] < 0.5$	E = 0.47
Efficiency 41 nm CAST 41 nm, GSD = 1.57	$0.5 < [E = \frac{C_{Dut}}{C_{CPC}}]$	E = 0.84
Efficiency 80 nm CAST 83 nm, GSD = 1.54	$0.7 < [E = \frac{C_{Dut}}{C_{CPC}}] < 1.3$	E = 1.13
Efficiency 200 nm CAST 192 nm, GSD = 1.56	$[E = \frac{C_{Dut}}{C_{CPC}}] < 2.0$	E = 1.23
Endurance 6 h; CAST 80 nm w/o VPR, C ≈ 5e6 cm ⁻³	$0.7 < [E = \frac{C_{Dut}(t)}{C_{CPC}(t)}] < 1.3$	t = 0 h: E = 1.05 t = 6 h: E = 0.99
Official measurement CAST 80 nm, $C_1 \approx 1e5 \text{ cm}^{-3}, C_2 \approx 5e5 \text{ cm}^{-3}$	$0.7 < [E = \frac{C_{Dut}}{C_{CPC}}] < 1.3$	$C_1 = 1.27e5 \text{ cm}^{-3}$: E = 1.075 $C_2 = 5.57e5 \text{ cm}^{-3}$: E = 1.055
Tetracontane removal 30 nm, $C_{Tc} = 10^5 \text{ cm}^{-3}$	$\left[E = \frac{C_{Dut}}{C_{Tc}}\right] < 0.05$	$\frac{1.14}{7.2\mathrm{e5}} = 0.0000016$

Prototype Conformity Tests at METAS continued

Test	Requirement	NPET Prototype
Ambient pressure dependence P ≈ P _{atm} ±10 kPa	$0.7 < [R = \frac{C_{Dut}(P)/C_{CPC}(P)}{C_{Dut}(P_{amb})/C_{CPC}(P_{amb})}] < 1.3$	$P_1 = 86 \text{ kPa: } \text{R} = 1.04$ $P_{\text{amb}} = 95 \text{ kPa: } \text{R} = 1.00$ $P_2 = 104 \text{ kPa: } \text{R} = 0.85$
Amb. low temp. dependence $T_1=T_{amb}, T_2=-8^{\circ}C$	$0.7 < [R = \frac{C_{Dut}(T)/C_{CPC}(T)}{C_{Dut}(T_{amb})/C_{CPC}(T_{amb})}] < 1.3$	T_{amb} = 24 °C: R = 1.00 T_2 = -8 °C: R = 0.84
Amb. high temp. dependence $T_1=T_{amb}, T_2=38^{\circ}C$	$0.7 < [R = \frac{C_{Dut}(T) / C_{CPC}(T)}{C_{Dut}(T_{amb}) / C_{CPC}(T_{amb})}] < 1.3$	T_{amb} = 24 °C: R = 1.00 T_2 = 38 °C: R = 0.73
Step response T _{10% -90%}	T _{10%-90%} < 5 s	$T_{10\% -90\%} < 4 s$
Time Lag T _{0%-70%}	T _{0% -70%} < 10 s	T _{0%-70%} < 7 s

Results of First Field Tests by BAFU Construction Machines

Results of First Field Tests by BAFU Construction Machines

Results of First Field Tests by BAFU Construction Machines

Results of First Field Tests by BAFU Dumpers & Stationary Engines

16

Results of First Field Tests by BAFU Dumpers & Stationary Engines

Results of First Field Tests by BAFU Dumpers & Stationary Engines

Measurement Examples

- + Data were taken at U of Minnesota (Dave Kittelson & Will Northrup)
 - Engine held at a simulated high idle
 - Regeneration event

• Comparison with EEPS

Simulated High Idle Mean Concentration = 193 cm⁻³

Regeneration Event

10

21

Comparison with EEPS

22

Comparison with EEPS

Engine Startup, DPF Out

13,

Conclusions

- + Robust, portable instrument for field measurements
- + Conformity to Swiss SR 941.242
- + Good linearity of response between ~ 200 and 5e6 particles per cm³ in official measurement mode
- + Distribution, customer service and support in Switzerland by Deltatech in Hunzenschwil
- + We are ready to accept your orders

Thank you very much!

Questions ?

For additional information: <u>hans-georg.horn@tsi.com</u> <u>www.tsi.com</u> <u>www.deltatech.ch</u>

DELTATECH