Particle Emissions From Vehicle Exhaust During Engine Start-up

Pilot Study

Imad A. Khalek & Huzeifa Badshah 18th ETH Conference on Combustion Generated Nanoparticles, June 23-25, 2014

Southwest Research Institute®

San Antonio, Texas

Purpose

Develop a sampling system to measure :

- Real time solid particle number concentration (#/cm³)
- Solid particle Size distributions
- Metallic ash particle number
- Compare results from different engine types during engine start-up:
 - Gasoline Port Fuel Injection (PFI)
 - Gasoline Direct Injection (GDI)
 - Diesel with Diesel Particulate Filters
- Develop a method of ranking vehicles according to a particle number (PN) emissions index

Background

- Frequency of engine ignition (startup) is common in:
 - Household garages
 - Parking lots
 - Hybrid vehicles alternating between engine and battery power
 - vehicles with frequent engine stops or shutdown
 - This is a common future trend for fuel economy saving
- Human exposure to engine startup particle emissions can be significant in:
 - Shopping centers parking lots
 - Traffic jams
 - Etc..
- Engine start-up requires substantial fuel enrichment in gasoline vehicles, which can lead to a rise in particle formation

Dilution System-Solid Exhaust Particle Measurement Only

Particle Penetration as a Function of Size

• Highest losses in Primary section – largely thermophoretic losses.

Testing Method

- Vehicle approaches measuring station
 - Turn off engine
 - Sample probe inserted in the tailpipe
- As the vehicle was turned on, the "start-up" phase began
 - ~ 20 to 30 seconds
- Vehicle left to idle
 - ~ 30 seconds
- Probe removed from tailpipe
- Start-up test completed!
- Total time (~2 minutes)

- Diesel vehicles are common in large engines and trucks in the USA but not for passenger type vehicles.
- GDI vehicle's market penetration is increasing (50% to 60% in 2016)
- Vehicles were tested in the parking lots of:
 - University of Texas-San Antonio Campus and Southwest Research Institute
 - Ambient temperature was ~35°C

Identifying Start-up Region

- Automated algorithms can be used for identification of vehicle start-up region and data computation.
- Allows for processing of data from an array of vehicles at once.

Average Particle Number Concentration

- Particle concentration increases as engine size increases for PFI vehicles
- GDI engines as highest particle emitters and Diesel with DPF's the cleanest

- Geometric Mean Diameter shows GDI engines high in accumulation mode particles (> 25nm)
- Current PMP method does not detect PFI particles

Particle Number Indexing Concept

- **Diesel with high efficiency DPF as the baseline/reference**
 - Best Available Technology
- PN indexed each vehicle as compared to the Diesel Vehicle
- Average Concentration and Engine Size (L) obtained per group
 - Served as a basis for comparison for other vehicles in the group $PM Index_{i} = \frac{Concentration_{i}}{Concentration_{Diesel}} * \frac{Engine Size (L)_{i}}{Engine Size (L)_{Diesel}}$

- Vehicles indexed for nuclei and accumulation mode
 - Rank from 1-900 (900 = worst) for Nuclei Mode
 - **Rank from 1-9000 (9000 = worst) for Accumulation Mode** —

Particle Number Emission Index

PN Index for Post 2010 Vehicles

Particle Number and Ash Concentration

- GDI engines have high Particle Number and Ash Concentration
- Soot particles may act as a carrier of ash
- Low soot content may result in ash deposits on exhaust walls

Summary

- Engine startup can be a significant source of solid particle number
- Gasoline PFI and GDI vehicles can be a significant source, compared to diesel with DPF
- Compared to best available technology (diesel with DPF), the PN index can be as high as 9000. This is a factor of 9000 higher than best available technology
- This work was done at hot ambient temperature of 35°C. It will be of interest to expand this work to low temperature environment
- The PN emissions index is a concept that can be fine tuned and refined to reflect differentiating vehicles beyond the required emissions standard:
 - e.g. GDI vehicles meeting the same standard:
 - One with exhaust filter and one without an exhaust filter. The PN emissions index defined here will show a huge difference between the two

Acknowledgements

- This work was supported by:
 - University of Texas at San Antonio as a part of an undergraduate honor thesis for Huzeifa Badshah, Mechanical Engineering, with Prof. *Randall Manteufel as faculty adviser*.
 - Southwest Research Institute

