

Materials Science & Technolog y

Electron microscopic analysis of metal-bearing particle emissions from diesel engines

A. Liati, P. Dimopoulos Eggenschwiler, D. Schreiber

Laboratory of Internal Combustion Engines, Empa

Hilfe1Diese Folie enthält zwei Mastergruppen (Master und Titelmaster), welche den Corporate-Design-konformen Auftritt definieren. Der jetzt
zugewiesene Empa-Master 1 sieht für die Titelfolie das Empa-Logo vor. Den weiteren Folien ist kein Logo zugewiesen. Für längere Vorträge mit
Zwischentiteln empfehlen wir, den Folien mit Zwischentiteln den Empa-Master 2 (mit Logo unten rechts) zuzuweisen. Dazu öffnen Sie via
Ansicht > Aufgabenbereich > Foliendesign-Entwurfsvorlage rechts die Masterauswahl. Nun markieren Sie im linken Ansichtsfenster die Folien,
denen Empa-Master 2 zugewiesen werden soll (mindestens zwei, ansonsten für den ganzen Satz Empa-Master 1 verwendet wird). Weitere Hilfe
erhalten Sie bei Monika Ernst, 4995 (Empa, Dübendorf)
M. Ernst; 04.02.2005

<u>Outline</u>

- Brief Introduction on ash PM
- Analytical techniques for the study of ash
- Sampling methods/setup
- Two case studies:
- *i.* Ash depositions in diesel particulate filters
- *ii.* Ash sampled directly from the exhaust stream
- Summary Conclusive remarks

ASH: Non-combustible PM in diesel exhaust

Chemical component

Mechanically transported fragments

Metal additives in lubricating oil

Metal additives (traces) in fuel Metal fragments (engine wear)

Analytical techniques

Methods (macro-, micro-, nano-scale):

- Macroscopic study (on dissected DPFs)
- Optical microscopy
- X-ray diffraction analysis
- Scanning electron microscopy (SEM) EDX
- Transmission electron microscopy (TEM) EDX

Morphology (surface features, shape, size), chemical composition \Longrightarrow

Health effects (epidemiological / toxicological) \Longrightarrow

Important for validating and developing mitigation measures/strategies

Sampling methods / setup

Ash depositions in diesel particulate filters
Ash sampled directly on TEM grids

Disassembling the DPF

Embed filter segments into epoxy to stabilise loose particles

without epoxy

INFLOW

Sampling of PM directly from the exhaust stream on TEM grids

Sampling of PM directly from the exhaust stream on TEM grids

DPF casing Electrostatic particle sampler Sampling site The TEM grid holder is heated/under high voltage

RESULTS: Ash deposits in DPF: channels start filling up with ash from the plugged ends toward the inflow

Section of a filter segment parallel to the flow direction – ca. 3-5 cm (ca. 15% of the effective filter volume) from the plugged ends are filled up with ash.

Diesel Particulate Filter - Assembly

Ash aggregates consist predominantly of Ca,P,Mg,Zn,O,S,Al,Fe-bearing phases and of fragments detached from the DOC

TEM-image of ash aggregates

DOC substrate with Pt particles (bright) (Pt: 40-5nm)

17th ETH-Conference on Combustion Generated Nanoparticles

Ash aggregates (Ca,P,Mg,Zn,O,S,AI) with dispersed Pt-particles (without their substrate)

TEM-image of ash aggregates

Ash particle constituents of aggregates have sizes of ~170-60nm, down to ~7nm

TEM images (STEM, BF mode) of individual ash particles

Summary for ash depositions in DPF

- Ash forms powdery aggregates (a few µm to 100s of µm large), deposited at the rear part of the DPF and on channel walls along the DPF.
- Ash consists of Ca,P,Zn,Mg,S (lube oil-related), Fe,Cr,Ni,Cu (engine wear), noble metals: Pt,Pd (DOC), AI,Mg,Si (DOC, intumescent mat).
- The primary particle constituents of the ash aggregates range in size between ~170-60nm, down to ~7nm.

RESULTS FROM SAMPLING DIRECTLY ON TEM GRIDS

- DPF was new before the experiment; efficiency>99%
- SiC, uncoated
- Degreened Loaded with soot for ~2000 km (speed: 70km, 5th gear)
- Sampling: normal operating conditions, at steady state operation.

Soot agglomerates that escape the DPF are usually large and ash-bearing

SEM images of samples collected downstream of the DPF (5-10 min sampling time – undiluted).

TEM-element mapping of aoot agglomerate with attached ash (S,Mg,Si,Ca,Zn,Fe,Mn)

Ash aggregates not attached onto soot can escape the DPF

SEM images of ash collected downstream of the DPF

S,O,Zn,(Mn,Fe,Cr,Ni)

TEM images of ash collected downstream of the DPF

Fe-oxide nanoparticles can form by in-cylinder melting of steel fragments

CFD simulations on steel fragment transport: steel fragments, 10-20µm in size, dislodged from the piston surface or from the fuel nozzle can be transported to hot areas of the combustion chamber where they can melt.

Time spent by the steel fragments at T≥1800 K in O-rich conditions

[Liati, Pandurangi, Boulouchos et al. (ES&T in press)]

Summary for ash collected directly from the exhaust stream

- Ash aggregates escape even high efficiency DPF (>99%); escaping ash aggregates are commonly attached onto large soot agglomerates
- Size of ash aggregates escaping filtration: 0.2-2µm; size of primary ash particles: 20-400nm.
- The DPF can promote breakout of large (ash bearing) soot agglomerates

Summary for ash collected directly from the exhaust stream

- Trace amounts of steel fragments can detach from the piston surface and/or fuel nozzle, melt and form new Fe-oxide nanoparticles.
- Environmental concern also for cars other than diesel

Thank you for listening!

Soot agglomerates may block filter wall pores and increase the ΔP between inlet and outlet channel

SEM – BSE images from the channel wall

Biofuel (RME) produces very little soot

DPF operating with 100% biofuel (RME) shows most ash deposition besides lube oil also biofuel contributes to ash production

 Mainly Ca, S and part of P derive from biofuel;
Part of Ca,S,P, as well as Mg, Zn from lube oil;

Na,K, part of Al from transesterification